A MEMORY-BASED MODEL OF BOUNDED RATIONALITY*

SENDHIL MULLAINATHAN

In order to investigate the impact of limited memory on human behavior, I develop a model of memory grounded in psychological and biological research. I assume that people take their memories as accurate and use them to make inferences. The resulting model predicts both over- and underreaction but provides enough structure to predict when each effect dominates. I then use this framework to study the consumption decision. The results match empirical work on consumption predictability as well as differences in the marginal propensity to consume from different income streams. Most importantly, because it ties the extent of bias to a measurable aspect of the stochastic process being forecasted, the model makes testable empirical predictions.

I. INTRODUCTION

Memory affects how we draw conclusions and make decisions. When purchasing a car, for example, our memories inform us about the different choices. In thinking about a brand, we may recall newspaper reports about high accident rates or a friend’s complaints about being stuck in the rain after an unexpected breakdown. Despite its importance in many facets of economic life, however, memory limitations are largely ignored in economic

* This paper was written while I was a graduate student at Harvard University. I am indebted to my thesis committee, Drew Fudenberg, Lawrence Katz, and Andrei Shleifer for their generous advice and encouragement, and to Marianne Bertrand, Edward Glaeser, David Laibson, and Richard Thaler for many helpful discussions. I have also received helpful comments from three anonymous referees, George Baker, John Campbell, Caroline Hoxby, Erzo F. P. Luttmer, and participants at numerous seminars. Financial support from the Chiles Foundation is gratefully acknowledged. e-mail: mullain@mit.edu.

© 2002 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology.

The Quarterly Journal of Economics, August 2002
analysis.¹ In this paper I attempt to develop a tractable model of human memory, one that has testable predictions about economic behavior.

To build this model, I cull two stylized facts from the broad research on memory by biologists and psychologists. The first fact, termed rehearsal, states that remembering an event once makes it easier to remember that event again. Most students studying for an exam, by reading their lecture notes and repeatedly attempting to recall the material, take advantage of rehearsal. The second fact, termed associativeness, states that similarity of the memory to current events facilitates recall. Cues in today's events trigger memories that contain similar cues. Hearing your friend lament about how his Fiat has turned out to be a lemon may remind you of other Fiat horror stories.

While these facts describe the technology of memory, they do not tell us how memory is used. At one extreme, people may simply apply to the recalled history the forecast rule that is optimal for perfect memory. In other words, they may ignore memory imperfections in making inferences. At the opposite extreme, they may completely understand exactly how their memory is distorted and adjust their forecasts to correct for these distortions. Both of these decision rules—as well as “partial adjustment” rules—have their appeal and undoubtedly should be characterized. This paper takes the first step and draws out the implications of the naive model where people do not adjust for fallibility of memory.²

When memory is used in this way, several interesting features result. First, associativeness means that events affect beliefs through not only the information they convey but also through the memories they evoke. Receiving a devastating referee report likely evokes many bad memories, particularly other

2. I chose to examine the naive rule first since experimental evidence suggests that individuals have neither accurate models of memory, nor correct for their memory mistakes in laboratory settings, making the naive model a natural starting point. Of course, in cases with repetition and room for learning, sophistication may come to have more descriptive power. This makes it the next natural model to study. This first pass also abstracts from recall effort. Individuals may work harder to remember certain events in the past over others. Such effort may take the form of mental exertion or the use of diaries to keep track of important information.
instances that erode self-confidence. More generally, associativeness generates an overreaction (on average) to information as each event draws forth similar, supporting, memories. In a related vein, completely uninformative signals can influence beliefs if they affect what is recalled. Viewing a fictional speech by a laid-off worker on the difficulty of finding a decent job may affect beliefs because it may trigger other, more informative memories.

Second, because of rehearsal, the memories evoked by an event linger, causing errors in belief to persist. So the overreaction caused by associativeness dissipates only slowly. More generally, events will continue to have an effect long after the information they contain is discredited. A smear campaign can have lingering effects even after all the “facts” it proclaimed are thoroughly debunked. The unflattering memories brought to mind stay, casting a negative shadow on the target. As another example, consider a judge instructing the jury to disregard the testimony they just heard. Even a well-intentioned jury would find it hard to fully comply with such a request.

These results—and others derived through similar reasoning—match many of the experimentally found biases in human inference, such as the greater effect of salient information, the hot hand or belief perseverance. Most interestingly, though, the model makes a set of out-of-sample predictions. It relates the extent of such phenomena to the stochastic process that individuals are forecasting. When the stochastic process requires little use of history (such as a random walk), there will be little use of memory and hence little of the biases described. This ability to relate the extent of the bias to a measurable aspect of the stochastic process being studied makes the model refutable.

To assess the effectiveness of the general model in economic contexts, I apply it to consumption within a simple Permanent Income Hypothesis framework. Memory distortions here generate violations of the standard orthogonality predictions: consumption changes can be predicted using lagged information. Intuitively, when individuals receive good news about their personal income, such as a glowing compliment from the boss, they are more likely to remember other good news, causing them to overforecast their future income. This generates predictability of future consumption changes. The model also predicts that when there are multiple income sources, the marginal propensity to consume permanent income changes will be different for each stream. Income sources will show a high marginal propensity to
consume when memories play a large role in forecasting it, such as with personal labor income rather than with gains in one's 401(k). Most importantly, as in the general case, the model makes a set of out-of-sample predictions. It relates the extent of consumption predictability to a parameter of the income process that measures the importance of the history. Moreover, since income streams with a high MPC connote overreaction, it further predicts that the income streams with the largest MPCs should show the greatest negative correlation with future consumption.

These results suggest that bounds on human memory can be fruitfully modeled. They match psychological findings as well as empirical facts in consumption, as well as providing out-of-sample predictions that can be tested on standard data sets. Models based on bounded rationality often invoke fears of post hoc rationalization, fears that with a sufficiently flexible set of assumptions almost any behavior can be "explained." These out-of-sample predictions are a first step in alleviating such fears. As a whole, the findings suggest that models incorporating realistic limitations on recall have strong, testable implications about economic behavior.

II. Setup

The basic framework examines an individual who forms expectations about a state variable. I will take this variable to be synonymous with permanent income in future discussions, but it can be many other things: a firm's earning power, macroeconomic conditions, or an employee's abilities are just a few examples. Forecasts of income clearly influence many decisions—savings, job search, or portfolio choice—and in subsection III.D, I explicitly study the consumption decision. Labor income changes for a variety of reasons, such as macroeconomic shocks, technological innovations, or changes in expectations about an individual's ability. As these examples indicate, forming forecasts requires combining a diverse set of information. Some of this information is, loosely speaking, "hard" or readily available in records: income in prior months, unemployment, or GDP. Other information is "soft" or harder to capture in records: a friend in a similar position being fired or a boss telling you that you are one of the best employees he has seen. Knowledge of soft information depends on memory, while knowledge of hard information typically does not.
This disjunction between hard and soft will be useful for the model that follows.

II.A. Environment

The timing of the forecasts is simple. At the beginning of each period, an event that conveys soft information is observed. Then, this information is combined with past information to form a forecast \hat{y}_t. Finally, at the end of the period the true value of income is observed. The game is then repeated.

Let y_t, income, obey the stochastic process:

$$y_t = \sum_{k=1}^{t} v_k + \epsilon_t,$$

where ϵ_t is a transitory shock distributed $N(0, \sigma^2_\epsilon)$ and v_k is a permanent shock, whose structure I will describe shortly. y_t is observed by the individual and represents the hard information. Assume that individuals have priors about the value of y which are normally distributed with mean \hat{y}_0 and variance σ^2_0.

The event, denoted e_t, occurs with probability p and has an informative, x_t, and noninformative, n_t, component. When there is no event, I will write $e_t = (0,0)$. Conditional on an event occurring, they are distributed:

$$e_t = (x_t, n_t) \sim N(0, \Sigma); \Sigma = \begin{pmatrix} \sigma^2_x & \sigma_{xn} \\ \sigma_{xn} & \sigma^2_n \end{pmatrix},$$

where $E[x_t] = E[n_t] = 0$. The covariance term, $\sigma_{xn} = \text{cov}(x, n)$, measures whether the neutral component typically appears with positive or negative information. A concrete example of an event might be hearing a friend describing his recent unemployment experience. The length of his unemployment spell is informative (x_t), while the fact that he has a pregnant wife with medical bills piling up is uninformative (n_t). The model includes uninformative, or neutral components, because they affect recall probabilities.

3. This assumption guarantees that recalled memories will not on average be biased to being too positive or negative. As shown in Mullainathan [1998], symmetry of the x_t and n_t guarantees zero average bias. The normality assumption provides this symmetry.

4. Of course, as the example also illustrates, every part of an event will have some information content, and the dichotomy between x_t and n_t merely simplifies this spectrum.
The permanent shock at time t will be defined as
\[v_t = x_t + z_t, \]
where $z_t \sim N(0, \sigma_z^2)$. Thus, while the informative part of the event tells her something about the shock that period, its informativeness is incomplete and depends on σ_x^2/σ_z^2.

II.B. Memory

Memory will be modeled as a stochastic map that transforms true history into perceived history. Let history h_t be a vector that includes y_k and e_k for $k < t$:
\[h_t = (y_1, \ldots, y_{t-1}, e_1, \ldots, e_{t-1}). \]
Memory maps h_t into a random variable h_t^R. I begin by making mathematical assumptions about the nature of this map and then use experimental evidence to characterize the remainder.

As discussed, past values of income are hard information readily available in records. I therefore assume that Y_k will be recalled perfectly. Events, on the other hand, characterize soft information, and are more prone to be forgotten. Formally, write recalled history as $h_t^R = (e_{1,1}^R, e_{1,1}^R, \ldots, e_{t-1,1}^R, y_1, \ldots, y_{t-1})$. Notice that in the recalled history, y_k is unaffected, whereas e_t is transformed into a random variable, e_t^R whose value is governed by
\[e_t^R = \begin{cases} e_t & \text{with probability } r_{kt} \\ (0,0) & \text{with probability } 1 - r_{kt}. \end{cases} \]

The probability that event e_k is recalled at time t is denoted by r_{kt}, where these probabilities are applied independently across events, although algebraically the probabilities may be linked.

When an event is forgotten, it is exactly as if no event occurred that period. A metaphor may help. Picture history as a series of boxes, one for every time period. Each box contains the details of...
that period's event. An empty box signifies that no event occurred that period. Memory goes to each box and flips a coin with weight r_{kt} to determine whether the event in that box will be remembered; if forgotten, the box appears empty to the individual.

Notice some of the implicit assumptions made in this specification. Individuals do not remember distorted versions of events: they either remember them or not. They also do not "remember" events that never happened. Finally, a forgotten event matches a nonevent, so that there is no feeling of "I think something happened but I'm not sure what." To complete the model, I need to specify r_{kt}.

I turn to the scientific evidence to make this specification. Research by biologists and psychologists has generated much knowledge about memory.\(^8\) I focus on two of these features, which in my opinion are the most relevant ones for economists.

The first, rehearsal, states that recalling a memory increases future recall probabilities. Students quickly recognize this property: repetition strengthens memories. Experimental evidence on rehearsal can be found even at the neuronal level. Repeated firings between neurons strengthens their synaptic connections, or the strength of the "memory" stored there.\(^9\) At a more macro level, experiments with humans show similar behavior. Two groups of subjects memorize the same list of words. One group then practices recall of this list periodically, while the other does not (both see it only once). After the same time has elapsed for both groups, the group that has been periodically recalling the list shows higher recall of the list. That these findings should seem so obvious is a testament to the intuitive appeal of the rehearsal assumption.

The second, associativeness, states that events more similar to current events are easier to recall. For example, hearing a friend talk about his vacation will invoke memories of one's own vacations. Associativeness may arise because events serve as cues that help "find" lost memories. The importance of associativeness in every day recall has been emphasized by Tulving and his colleagues, who study the role of cues in recall [Tulving and

\(^8\) Schacter [1996] presents an excellent overview of this literature, one that I draw upon.
\(^9\) See Kandel, Schwartz, and Jessell [1991] for a discussion. A contrasting effect is habituation, wherein synaptic strength decreases with frequency. This corresponds to the idea that novel stimulus receives notice which lessens as the novelty wears off. I ignore this property because it a property of attention rather than of memory.
Schacter 1990; Tulving and Thomson 1973]. In one experiment, subjects learn a list of words in which each target word is paired with a cue word. The subjects are then asked to remember the target words, and are either provided with the associated cue or not. A broad set of such experiments finds that recall of the target words is higher when the paired word is present.10 A related example of this phenomenon is subjects who learn the sentence [Anderson et al. 1976]

\textit{The fish attacked the swimmer.}

They are more likely to remember this sentence if given the cue “shark” than if given no cue at all. Notice, however, that “shark” never appears in the sentence, which illustrates that associativeness likely operates also through conceptual similarity.11

As these studies demonstrate, both rehearsal and associativeness have a strong experimental basis.12 In fact, the most popular models of memory (and neural function generally), Parallel Distributed Processing Models, possess both features [Rumelhart and McClelland 1986]. Nevertheless, I do not mean to imply that these are the only “important” facts about memory, merely that these appear to be the most relevant to economists.13

I use three parameters to formalize these ideas: m (the base-

10 These paired words sometimes share a natural connection, such as “brain” and “mind” or “brain” and “drain,” and sometimes are unrelated, such as “brain” and “doughnut.” The findings hold in both cases, although the effect is stronger when the words are connected.

11 Laibson [2001] derives a theory of consumption based on preferences that exhibit a form of conditioning, which is related to associativeness [MacKintosh 1983]. Our papers differ because I focus on expectations rather than preferences. The similarity is interesting, however, and suggests that a memory model, in which individuals must use past experience to forecast preferences, potentially provides one microfoundation to the preferences used by Laibson.

12 The evolutionary advantage of these two properties is easy to understand. Frequently encountered phenomena and memories similar to current circumstances are both more relevant. I have not formally pursued this intuitive idea to get at a more evolutionary or optimizing basis for memory. Such a model would require a precise understanding of the constraints on what memory mechanisms are even biologically feasible.

13 Let me cite the two most interesting omissions. First, researchers now believe that certain memories are episodic (the time you tasted caviar), while others are semantic (you dislike caviar). This distinction is interesting because semantic memories may not possess all the episodes that gave rise to them. Second, memory seems to be reconstructive in nature [Neisser 1967]. The process of reconstruction uses a priori theories to put together the pieces, so facts that deviate from these theories will more likely be forgotten. In a seminal experiment, Bartlett [1932] demonstrates how in recalling stories, subjects often edit out inconsistent parts. I ignore these for the time being, however, because they lack the mass of evidence that supports the other two assumptions and because they are analytically more vague.
line recall probability), \(\rho\) (which quantifies rehearsal), and \(\chi\) (which quantifies associativeness). Assume that all are between zero and one and that \(m + \rho + \chi < 1\). Let \(R_{kt}\) denote the random variable which equals 1 if event \(k\) is recalled at time \(t\), with \(R_{(t-1)t} = 1\) and \(r_{(t-1)t} = 1\). Note that \(E[R_{kt}] = r_{kt}\). With this notation, we can write

\[r_{kt} = m + \rho R_{k(t-1)} + \chi a_{kt}. \]

The first term equals the baseline recall probability for all memories, \(m\). The second term captures rehearsal. Events recalled in the last period get a “boost” of \(\rho\). This formalism of rehearsal may seem awkward. Consider two events: \(e_{t-2}\) which occurred two days ago and \(e_{t-20}\) which occurred twenty days ago, and suppose that neither is remembered yesterday. Then (holding the third term constant) both have the same recall probability. Recall appears to display sharp, rather than smooth, decay. This awkwardness is superficial. Recall probabilities do exhibit exponential decay. Alternatively, I could build exponential decay directly into the dynamics of memorability, so that it occurs not only in expectation but also in every realization, and the results would not change.

The third term captures associativeness where \(a_{kt}\) measures the similarity of event \(e_k\) to \(e_t\). The events \(e_k = (x_k, n_k)\) and \(e_t = (x_t, n_t)\) are two points on a plane. Similarity can then be defined as a negative function of the distance between the points. Let \(c : (-\infty, \infty) \to (0, 1)\) be a closeness function (that is, an inverse distance function). Then similarity is defined as

\[a_{kt} = \frac{1}{2} (c(x_t - x_k) + c(n_t - n_k)) \]

and with the assumption that \(a_{kt} = 0\) if either \(e_k\) or \(e_t\) is a non-event. I will take the specific function \(c(x) = e^{-x^2}\), which allows one to write \(a_{kt} = \frac{1}{2} (e^{-(x_t - x_k)^2} + e^{-(n_t - n_k)^2})\). Thus, \(0 < a_{kt} < 1\), and \(a_{tt} = 1\).

Substituting back in to the original equation provides

\[r_{kt} = m + \rho R_{k(t-1)} + \chi \frac{1}{2} (c(x_t - x_k) + c(n_t - n_k)), \]

and recall that I assume that \(m + \rho + \chi < 1\). It will also be useful to define the forgetting probability, \(f_{kt} = 1 - r_{kt}\) and similarly \(F_{kt} = 1 - R_{kt}\). Further define the constant \(f = 1 - m - \rho\), so that we can write \(f_{kt} = f + \rho F_{k(t-1)} - \chi \frac{1}{2} (c(x_t - x_k) + c(n_t - n_k))\).

Finally, note that unlike the other basic assumptions of the
model, the choice of functional form here is arbitrary. I could as well have included an interaction term between associativeness and rehearsal or other higher order terms. As another example, I might have allowed for limited capacity so that only a finite set of memories could be recalled at any time, which would generate crowding. The intuition behind the results below, though, does not rely on the functional form.

II.C. Dynamics of Recall

Before understanding how memory affects forecasts, it will be useful to understand what affects the dynamics of recall. Simple recursive substitution yields

\[E[f_{kt}|e_k] = \left(f - \chi E[a_{kt}|e_k] \right) \frac{1 - \rho^{t-k}}{1 - \rho} \to \frac{f - \chi E[a_{kt}|e_k]}{1 - \rho} \]

for all \(k < t \). Recall probabilities decay exponentially over time: more distant memories have a higher chance of being forgotten. Experimental evidence on recall probabilities suggests that exponential decay of memories fits the data rather well.\(^\text{14}\) Also, \(E[a_{kt}|e_k] \) increases memorability. This term, which I will define as vividness, \(\gamma(e_k) \), measures how strongly associativeness affects a memory. Memories that are very similar to a randomly drawn event are more vivid; they are more likely to be triggered through associativeness and, therefore, more memorable.\(^\text{15}\)

Just as vividness captures the strength of associations that an event possesses, the evocativeness of event \(e_t \), defined to be \(\gamma(e_t) = E[x_k a_{kt}|e_t] \), captures the average information of these associated events. If today’s event is \(e_t \), then \(a_{kt} \) measures the strength of its association with event (memory) \(e_k \), while \(x_k \) measures the information content of that past event. The expectation of this product, therefore, measures the average information content of memories brought forth by associativeness. To illustrate evocativeness, consider the event \(e_t = (x_t, n_t) = (1, 1) \). The evocativeness of this event has two parts. First, \(x_t = 1 \) implies positive evocativeness. Other \(x_t \) close to 1 will be evoked, leading to an

\(^{14}\) See Crovitz and Schiffman [1974]. A power function, however, seems to fit better.

\(^{15}\) This result, however, has the unfortunate property that outliers, very unusual events, have lower recall probability, contrary to one’s intuition. One resolution to this problem may be found in allowing for the possibility that unusual events may receive greater attention, and that attention may increase memorability.
oversampling of positive memories and positive evocativeness. Second, \(n_t = 1 \) can have a positive or negative impact on evocativeness depending on \(\sigma_{x_n} \). Since \(n_t = 1 \), other events with positive \(n_k \) are triggered, but the information content of these events clearly depends on \(\sigma_{x_n} \). When \(\sigma_{x_n} \) is zero, knowing that \(n_k > 0 \) says nothing about \(x_k \), so that the effect on evocativeness is zero. If \(\sigma_{x_n} \) is positive, knowing \(n_k > 0 \) tells us that \(x_k > 0 \): positive events are selectively triggered causing a positive effect on evocativeness. Finally, when \(\sigma_{x_n} \) is negative, \(n_k > 0 \) tells us that \(x_k < 0 \) generating a negative effect on evocativeness.

III. Basic Results

III.A. Perfect Memory Forecasts

The perfect memory forecast will serve as a useful base case against which one can compare the forgetful forecast. The process in equation (1) generates a signal extraction problem: the individual must separate out the permanent shocks to \(y_t \) from the transitory ones. A 5 percent income drop may represent a negative shock to permanent income or may only affect current income. Knowledge of both past events and \(y_k \) help to solve this inference problem. Events \(e_k \) are useful because they allow one to extract a component of the time \(k \) innovation \((x_k) \) that is definitely permanent. Past income realizations \(y_k \) are useful because they allow one to tease out the remainder of the permanent shock \((z_k) \) albeit with less certainty. For example, repeated observations of high income will suggest a permanent rise.16

The optimal forecast can be easily derived using the Kalman Filter (see [Harvey 1993]). The posterior at time \(t \) will be normally distributed with mean \(\hat{y}_t \) and variance \(\hat{\sigma}^2_t \). In steady state these beliefs will equal (see Lemma 1 in the Appendix)

\[
\hat{y}_t(h_t,e_t) = x_t + \sum_{k=1}^{t-1} [\lambda^{t-k}x_k + (1 - \lambda^{t-k})\Delta y_k].
\]

\[
\hat{\sigma}^2_t(h_t,e_t) = \sigma^2_x.
\]

16. Contrast this with the case where \(y_t \) follows a standard random walk. Then \(y_{t-1} \) is the only information in the past needed to forecast \(y_t \). For the model formulated in this paper, \(y_{t-1} \) is a sufficient statistic for all past information. This is an artifact, however, of the simplicity of the model. If we complicate it by assuming that different events have different levels of mean reversion rather than all being permanent, this will no longer be true. Forecasts must then rely directly on all past \(y_k \) and \(e_k \).
Here \(\Delta y_k = y_k - y_{k-1} \) is the change in income. The variable \(\sigma_y^2 = \frac{1}{2} \left(\sigma_y^2 + \sqrt{\sigma_y^2 (\sigma_y^2 + 4\sigma_e^2)} \right) \) is the long-run variance of income and \(\lambda = \sigma_y^2 / (\sigma_y^2 + \sigma_e^2) \) is the associated long-run error-to-truth ratio.

Understanding the marginal impact of different variables will improve intuition about the forecast rule. First, \(x_k \) influences forecasts one-for-one. Its impact is the sum of two terms, a direct effect which contributes \(\lambda^{t-k} x_k \) and an indirect effect from \(\Delta y_k \), because \(\Delta y_k = x_k + z_k + \epsilon_k - \epsilon_{k-1} \), that contributes \((1 - \lambda^{t-k}) x_k \). Summing shows that the total coefficient on \(x_k \) is unity. Second, \(\Delta y_k \) enters forecasts with weight \(1 - \lambda^{t-k} < 1 \) as is clear from the formula. Third, \(y_k \) influences forecasts at \(\lambda^{t-k-1}(1 - \lambda) < 1 \) because it enters in \(\Delta y_k \) and in \(\Delta y_{k+1} \). Both \(y_k \) and \(\Delta y_k \) have a less than one-for-one impact because both are noisy estimates of permanent income (or permanent income changes). That \(x_k \) has greater impact reiterates the importance of events in separating signal from noise. They show the individual a portion of the income change that for sure is permanent. Fourth, \(n_k \) has zero impact as expected: neutral components convey no information. Finally, \(\lambda \) measures the importance of history in forecasts. As \(\lambda \) increases, older \(y_k \) receive greater weight. This is intuitive. When \(\lambda \) approaches zero, most of the variance comes from permanent shocks, and hence the process resembles a random walk. In this case, history matters the least, and past values receive the least weight.

III.B. Limited Memory Expectations

To specify the forecasts of the forgetful individual, I make a crucial assumption: the forgetful individual applies the forecasting rule to the recalled history. In other words, she takes the recalled history as the true history. Let \(\hat{y}_t^R(h_t^R, e_t) \) denote the mean and \(\hat{\sigma}_t^2(h_t^R, e_t) \) denote the variance of a (naive) forgetful Bayesian’s posteriors. This assumption can then be stated formally as \(\hat{y}_t^R(h_t^R, e_t) = \hat{y}_t(h_t^R, e_t) \) and \(\hat{\sigma}_t^2(h_t^R, e_t) = \hat{\sigma}_t^2(h_t^R, e_t) \).

As discussed above, I focus on the naive rather than the sophisticated decision maker. I have chosen to investigate the naive case first because experimental evidence suggests that it describes behavior at least as it happens in the laboratory.\(^{17}\) Of

\(^{17}\) Studies of individual’s judgments of their own memories reveal inaccuracy in understanding their memory process (see, for example, Reder [1996]). Similarly, experiments have manipulated the memorability of information and tested whether individuals’ decisions correct for this manipulation. Supportive of the naivete assumption, decisions are insensitive to this manipulation. See, for
course, repetition and learning may improve memory and the decision-making process in a way not reflected in the experimental evidence but the findings suggest that characterizing the naive decision maker would clearly be a useful first step.18

Simple substitution gives the formula for the forgetful forecast:

\begin{align}
\hat{y}_t^R(h_t^R,e_t) &= x_t + \sum_{k=1}^{t-1} [R_{kt}\lambda^{t-k}x_k + (1 - \lambda^{t-k})\Delta y_k] \\
\sigma_t^2(h_t^R,e_t) &= \sigma^2.
\end{align}

In words, forgetful forecasts look just like perfect recall forecasts except that forgotten events ($R_{kt} = 0$) are excluded. Note that \hat{y}_t^R is a random variable. Taking expectations over this random variable implies that events are weighted by their recall probability.

In order to contrast the perfect recall and forgetful forecasts, it will be useful to define a memory error. First, let $err_t = y_t - \hat{y}_t$ and $err_t^R = y_t - \hat{y}_t^R$ be the forecast errors of the perfect recall and forgetful forecasts, respectively. Now define

$$err_m^R = \hat{y}_t - \hat{y}_t^R$$

to be the memory error, that is the difference in forecasts caused by memory problems. Note that $err_t^R = err_t + err_t^m$, so that the memory error also measures how memory distorts the forecast error of the forgetful individual. With these definitions in hand, I now examine the determinants of beliefs.

Proposition 1. The impact of event e_t on time t beliefs does not depend on its vividness, but does depend (positively) on its evocativeness. On the other hand, its impact on time $t + j$ beliefs depends on both vividness and evocativeness.

18 Preliminary results suggest that even more interesting results may arise in the sophisticated model. For example, suppose that forecasts are not remembered but zero-one decisions that condition on forecasts are remembered with certainty. Then, a herding problem akin to Banerjee [1992] arises. Consider an individual who remembers choosing one several times but currently faces information that suggests zero is the best choice. For certain histories and parameter values, the weight of having chosen one in the past ("I must have had some reason to do it") will dominate, and he will choose one again. But this implies that the zero signal that he received this period will be jammed and he will be stuck in a herding equilibrium.

18 Preliminary results suggest that even more interesting results may arise in the sophisticated model. For example, Trope [1978]. This also resembles findings by Kahneman and Tversky [1972] on the availability heuristic, that individuals take more easily remembered events also to be more probable.

This content downloaded from 128.135.130.141 on Wed, 14 Nov 2018 22:08:33 UTC
All use subject to https://about.jstor.org/terms
Proof of Proposition 1. From Lemma 3 we know that

\[E[\hat{y}_t^R|e_t] = x_t + \chi^\prime(e_t) \frac{\lambda(1 - \lambda^{t-1})}{1 - \lambda}, \]

which shows that the contemporaneous effect depends on evocativeness and does not depend on vividness. The intuition here is simple. Evocativeness influences what memories are triggered and, therefore, has a direct effect on beliefs. Vividness only operates through increased memorability, which of course cannot have an impact on contemporaneous beliefs.

For the impact on future beliefs, Lemma 4 in the Appendix shows that

\[E[\hat{y}_{t+j}^R|e_t] = x_t \left(1 - \frac{f - \chi^\prime(e_t)}{1 - \rho} (1 - \rho^j)\lambda^j\right) + (\rho\lambda^j)^{\prime}\chi^\prime(e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}), \]

where we see as before the dependence on evocativeness. This is because the memories triggered at time \(t \) were rehearsed and, therefore, continue to have higher recall probability even at time \(t + j \). Consistent with this, note that as \(\rho \to 0 \), the effect disappears. We also see here that vividness now plays a role. As we saw, vividness increases memorability. Thus, it increases the marginal impact of \(x_t \) by making it more likely to be recalled and used in forming beliefs. One implication is that when \(x_t = 0 \), changes in vividness have no impact: whether or not the event is recalled, it does not influence beliefs.

This proposition and its proof makes several points that are worth reiterating. Vividness, how associated a memory is, plays no role in how an event influences beliefs at the time it occurs. It only matters as time passes and a change to forget the event appears. By increasing memorability, vividness influences whether or not an event is remembered and thereby whether or not the information it conveys is used in the future.

Evocativeness, the average information content of memories associated with an event, does influence beliefs contemporaneously. An event with positive evocativeness, for example, disproportionately draws forth positive memories leading to a more positive forecast. Moreover, since these triggered memories persist (by rehearsal), evocativeness also influences future beliefs,
although its effect diminishes over time (the ρ^j exponent). Summarizing, the current model decomposes the intuitive notion of "salience" into two components: vividness, which captures increased memorability, and evocativeness, which captures the ability of events to trigger supporting evidence. Both affect an event's impact on beliefs but in different ways. An interesting implication is that even completely uninformative signals can affect beliefs.

Proposition 2. Let $e_t = (0, n_t)$ be an uninformative event but with nonzero neutral component ($n_t \neq 0$). This event influences beliefs if and only if $\sigma_{xn} \neq 0$. The sign of this influence equals $\text{sign}(\sigma_{xn} n_t)$.

Proof of Proposition 2. Appealing to Lemma 3, uninformative events can influence beliefs only if their evocativeness is nonzero. The evocativeness of an uninformative event equals

$$E[x_k a_{kt}|e_t = (0, n_t)] = \frac{1}{2} E[x_k c(0 - x_k)|e_t] + \frac{1}{2} E[x_k c(n_k - n_t)|e_t].$$

The first term is zero by symmetry of $c(\cdot)$ and the symmetry of the x_k distribution. To evaluate the second term, apply the law of iterated expectations and condition on n_k and n_t to get

$$E[x_k c(n_k - n_t)|e_t] = E[E[x_k|n_t, n_k]c(n_k - n_t)|e_t]$$

$$= \sigma_{xn} E[n_k c(n_k - n_t)|e_t].$$

As Lemma 5 shows, this is nonzero whenever $n_t \neq 0$, and the sign of this term (and hence the event's evocativeness) is $\text{sign}(\sigma_{xn} n_t)$ which establishes the first part.

The logic here is simple. Even though individuals disregard a signal with $x_t = 0$ as completely uninformative, their beliefs are still shaped by the memories these events trigger. The mediator in this process is σ_{xn}, which determines whether the neutral cue tends to appear with positive or negative information. For example, $\sigma_{xn} > 0$, a positive neutral cue ($n_t > 0$) selectively evokes other positive neutral cue ($n_k > 0$) memories. If $\sigma_{xn} > 0$, these memories will (on average) have $x_k > 0$ and hence the event will selectively evoke positive information memories.

These results relate to experimental findings that salient information has a greater effect on beliefs. Two experiments highlight the differential effect of evocativeness and vividness. Thompson, Reyes, and Bower [1979] place subjects into the role of
jurors, who are asked to read defense and prosecution witness testimony about a drunk driving case. One side’s case was manipulated to be salient while the other's was manipulated to be pallid. After reading the two sides, subjects rate the guilt of the defendant and are asked to return the next day. When they return, they are asked to perform the rating again (they do not read the testimony again). Thompson, Reyes, and Bower find that the salience manipulation has no effect on the first day’s ratings. The lack of an immediate impact is comforting since it suggests that the salience manipulation did not also manipulate perceived informativeness. For example, we can rule out the possibility that subjects felt that a witness whose testimony contains more details is more reliable. The salience manipulation did, however, affect the second day’s judgments of guilt: when the prosecution’s (defense’s) case was more salient, judgments of guilt rose (fell).

One interpretation of these results is that the presence of additional cues (guacamole on white carpet) facilitates recall by marshaling associativeness. Vividness, as I have defined it, increases because these (irrelevant) cues—for example, spilling something on a carpet—are commonly encountered ones. The increased vividness of one side’s case means that memories overrepresent evidence supporting that side.

Hamill, Wilson, and Nisbett [1979] present another experiment, one that resembles evocativeness more than vividness. One set of subjects is presented with a description of a welfare recipient. As Nisbett and Ross [1980, p. 57] summarize:

The central figure was an obese, friendly, emotional, and irresponsible Puerto Rican woman who had been on welfare for many years. Middle-aged now, she had lived with a succession of “husbands,” typically also unemployed, and had borne children by each of them. Her home was a nightmare of dirty and dilapidated plastic furniture bought on time at outrageous prices, filthy kitchen appliances, and cockroaches walking about in the daylight. Her children . . . attended school off and on and had begun to run afoul

19. The salience manipulation was performed through adding inconsequential details to one side’s testimony. For example, in describing the defendant about to leave a party and drive home, the pallid version states that he bumped into a table, and knocked a bowl to the floor. The salient version, on the other hand, states that he knocked a bowl of guacamole dip off a table and onto a white carpet.

20. A weakness of the current model of the experiment should be pointed out. The guacamole on white carpet cue is effective not because it associates with current events but because it associates with past events. In other words, the model needs to allow not only for current events to form associations that facilitate recall, but also memories themselves should form associations that further facilitate recall. I expand on this when I discuss future extensions in subsection III.D.
of the law in their early teens, with the older children now thoroughly enmeshed in a life of heroin, numbers-running and welfare.

Another group was given summary statistics on welfare recipients documenting the short median stay (two years) and the small proportion that are on welfare rolls for long periods of time (only 10 percent for longer than four years). These statistics contrasted sharply with the priors of control subjects.

When the groups are asked to state their attitudes about welfare recipients, those receiving the story expressed far more unfavorable attitudes than a control group. Those receiving the pallid statistics showed no difference. Evocativeness provides one interpretation of these findings. The story that subjects read is overflowing with cues commonly found in evidence that paints welfare recipients in a poor light—drug use by children, immigrant, obese—whereas the statistics lack such evocative cues. The story thereby triggers evidence from the past that also contain these cues, evidence that will generally be negative and, therefore, prompts more negative attitudes toward welfare recipients. In this interpretation, the single case study is not taken as informative. It predicts that if they were questioned, subjects would recognize that one story (especially a manufactured one) proves nothing, but that it reminds them of other previously encountered evidence. Of course, the pallid statistics do not possess such cues and, therefore, have lower evocativeness.21

Together, these experiments illustrate the contrast between vividness and evocativeness. The inessential cues in the testimony (e.g., guacamole on the carpet) will not (on average) trigger other memories that condemn or exonerate the defendant. They do, however, make the testimony more vivid, and thus more likely to be remembered and influence beliefs in the future. On the other hand, the welfare mother story will selectively trigger memories. Its evocativeness means that it will have greater contemporaneous impact.

21. That they have no effect, however, indicates either that individuals do not put much faith in the statistics (numbers can be manipulated) or that other factors are at play there. It is also worth noting that an implication of this interpretation is that the effect of the manipulation (seeing the story) should disappear over time. If subjects were brought in at later dates, the difference between treatment and control should diminish and eventually vanish.
III.C. Overreaction and Underreaction

The previous propositions illustrate how information content alone does not determine an event's impact; the memories it triggers also matter. But these propositions do not tell us how forecast errors will be biased. Associativeness implies that events trigger memories that convey similar information. Such an effect causes an overreaction to news: today's events causes similar evidence to be overrepresented in memory. The following proposition formalizes this idea.

PROPOSITION 3. Forecast errors are negatively correlated with the information in the latest event:

\[\text{cov} (y_t - \hat{y}_R, x_t) = \text{cov} (\text{err}_t, x_t) < 0. \]

The extent of this overreaction increases with \(\chi \) and \(\lambda \):

\[\frac{\partial \text{cov}(\text{err}_t, x_t)}{\partial \chi} < 0 \text{ and } \frac{\partial \text{cov}(\text{err}_t, x_t)}{\partial \lambda} < 0. \]

Intuitively, good information may lead to a rosier view of the past, which leads to forecasts that are too large, which leads to a negative forecast error.\(^{22}\) Overreaction increases as \(\chi \) rises because \(\chi \) quantifies the importance of associativeness. Finally, the effect of \(\lambda \) arises because it measures the importance of history and thereby the importance of selective recall. This is an extremely important point, which we will return to in subsection III.D.

The previous proposition paints a picture of individuals overreacting to information. Rehearsal, however, generates underreaction. To see this, consider an individual who faces an uninformative event \(e_t = (0, n_t) \) at time \(t \). Suppose that this event evokes positive memories so that \(\gamma(e_t) > 0 \). The results in Proposition 2 illustrate how beliefs overreact to this noninformation: the positive memories it triggers result in forecasts that are too large. Since these memories are rehearsed, they will experience higher recall probabilities in future periods, meaning that forecasts will

\(^{22}\) Evidence on overreaction can be found in studies of the representativeness heuristic by Kahneman and Tversky [1972, 1973], Tversky and Kahneman [1971], and Grether [1980]. These studies find that in forming assessments individuals place too little weight on base rate evidence and too much weight on the latest piece of information. A similar phenomenon arises in the form of perceptions of a "hot hand" individuals seeing a streak expect it to continue. While this model does not provide compelling evidence of all the actual experimental evidence (in many of these, the relevant information is directly available and memory plays no role), it generates behavior in real settings that resembles the findings.
continue to be too large. As time goes on, they will decay toward the true value as the effect of the rehearsal on recall probabilities diminishes. To an outsider, the belief changes in later periods will seem as if they were underreaction. At both times $t + j$ and $t + j + 1$, she will see a downward adjustment, as the memories decay in each of those periods. The observer, therefore, sees a negative change followed by another predictable negative change, an apparent underreaction to the first negative change. Formally, note from Lemma 4, that

$$E[^{R}_{t+j}|e_t = (0,n_t)] = \frac{\lambda}{1 - \lambda} \cdot \mathcal{Z}(e_t)(\lambda \rho)^j.$$

Notice that if ρ were zero, this term would be zero, emphasizing the role of rehearsal. If we difference this over time, we find

$$E[^{R}_{t+1}|e_t = (0,n_t)] = \frac{\lambda}{1 - \lambda} \cdot \mathcal{Z}(e_t)(\lambda \rho)^j(\lambda \rho - 1),$$

which illustrates the negative “drift” in beliefs that follows an overreaction. In other words, all future belief revisions are negatively proportional to the initial evocativeness. Beliefs will, therefore, appear to drift toward some equilibrium. The intuition behind this finding is that there is more information in her forecast errors than the individual realizes since

$$err^R_t = err_t + err^m_t.$$

As with the perfect recall individual, the forecast error tells the forgetful individual that some change has occurred in the permanent component (err_t). But, it also tells the individual the way in which her memory is systematically biased (err^m_t). If she is positively surprised, the forgetful individual should both infer that there probably has been a positive shock and that she is systematically undersampling positive memories. I discuss this further in subsection III.D.

Slow adjustment arises even more intuitively in a slightly modified version of the model. Suppose that before observing that true event e_t, there is a period when the individual observes a noisy event e'_t (perhaps a rumor). Abstracting away from n_t for now, suppose that x'_t equals x_t plus noise. An example might be the announcement of a government statistic followed by a revision. In this setup, once x_t is revealed, the individual should pay no attention to x'_t. But rehearsal combined with associativeness
will imply that beliefs will still depend partly on \(x'_t \) even after \(x_t \) is revealed. Why? Because, even though the individual discards the information contained in \(x'_t \), the set of memories it evokes have been rehearsed, and they continue to have an impact in later periods.\(^{23}\) In the current model, slow adjustment appears as positively correlated forecast errors as shown in the following proposition, which is proved in the Appendix.

Proposition 4. Let \(T > t \). When events are very memorable \((f \text{ low, } \chi \text{ and } \rho \text{ large})\), then

\[
\text{cov} [err_t^R, err_{t+1}^R] > 0.
\]

This positive covariance can be understood as overlapping samples. Forgetting is analogous to sampling events from history. Since the samples at times \(t \) and \(T \) draw from overlapping histories, correlations arise. Moreover, rehearsal implies that memories that were forgotten will be forgotten again, increasing the autocorrelation in forecast errors. The condition that \(f \) must be sufficiently low occurs for the following reason. Suppose that \(f \) is very large. Then, the \(x_t \) from the past will likely be forgotten and hence \(x_t \) shows up with large weight in \(err_t^R \). We know from Proposition 3 that \(x_t \) is negatively correlated to \(err_t^R \). This implies a negative autocorrelation.

The results so far illustrate two conflicting forces: over- and underreaction. One advantage of a model such as this is that it allows us to trade off such effects and figure out when we expect one to arise over the other. The following proposition, proved in the Appendix, quantifies when belief changes are negatively (overreaction) and when they are positively correlated (underreaction) to lagged information.

Proposition 5. Suppose that forgetting probabilities are small, so that \(f \) is high and \(\rho \) and \(\chi \) are low. Then

\[
\text{cov} [\Delta y_{t+1}^R, \Delta y_{t-1}^R] < 0.
\]

When these probabilities are large, however,

\[
\text{cov} [\Delta y_{t+1}^R, \Delta y_{t-1}^R] > 0.
\]

\(^{23}\) This result bears a little resemblance to the findings on belief perseverance (e.g., Ross, Lepper, and Hubbard [1975]), the curse of knowledge (e.g., Camerer, Loewenstein, and Weber [1989]) and on hindsight bias (e.g., Fischhoff [1982]). Experiments in all three of these categories emphasize the inability of subjects to "undo" information. See Mullainathan [1998] for a discussion.
When the covariance is negative, then a change in λ makes it more negative:

\[\frac{\partial \text{cov} [\Delta y_{t+1}^R, \Delta y_{t-1}]}{\partial \lambda} < 0. \]

The intuition behind this proposition is that there are two effects that govern belief dynamics: forgetting and overreaction. On the one hand, yesterday’s information may have been forgotten, which means that the individual must learn it again. This induces a positive correlation between beliefs and lagged information. On the other, overreaction means that the individual responded too much to x_t when it occurred, meaning that beliefs must correct for this. This induces a negative correlation. When events are on average quite memorable, the overreaction effect dominates. When events are readily forgotten, the relearning effect dominates. The dependency on X reflects the discussion in subsection III.D. A greater emphasis on history implies that overreaction is larger and takes a longer time to undo.24

III.D. The Role of History

Recall that λ measures the weight put on past values in the forecast. In this subsection I will examine how λ mediates overreaction and slow learning. I will argue that λ can be measured easily and therefore the empirical tests involving λ can actually be implemented.

Let us begin by considering the impact of forgetting an event. The memory error equals

\[err_t^m = \hat{y}_t - \hat{y}_t^R = \sum_{k=1}^{t-1} \lambda^{t-k}(1 - R_{kt})x_k = \sum_{k=1}^{t-1} \lambda^{t-k}(F_{kt})x_k. \]

If $F_{kt} = 1$, so that event e_k is forgotten, the memory error would go up by $\lambda^{t-k}x_k$. This shows that the impact of forgetting an event declines as time passes ($t - k$ gets large). Moreover, the rate of decline depends on λ. The larger is λ, the larger is the effect of forgetting an event in the distant past. Why does this happen? As time proceeds, the information lost due to forgetting x_k is slowly

24. Given both these over- and underreaction biases, it is natural to ask whether an individual might not be simply better off by simply ignoring their memory completely. Mullainathan [1998] shows that ignoring memory may reduce bias but almost surely raises variance (since information is lost).
relearned through the y_t. Events provide perfect signals of the permanent shocks, so forgetting them means that this perfect signal is lost. In the absence of this signal, the individual still learns about the permanent shock but this time through y_t. Since y_t is noisy, however, this learning is slow. The more distant the memory, the more time there has been to learn about the event through observations of y_t instead. This establishes how slow learning will be. This learning occurs at rate λ because λ measures the noise-signal ratio in y_t. When it is large, y is a very noisy signal of permanent income and forgotten events are learned about very slowly. To summarize, λ captures how quickly a forgotten event can relearned through the y_t and hence how quickly errors in memory are corrected.

Let us now return to rederiving how beliefs respond to an event e_t:

$$E[y_t^R|e_t] = x_t - \sum_{k=1}^{t-1} \lambda^{t-k}E[x_k f_k|e_t]$$

$$x_t + \sum_{k=1}^{t-1} \lambda^{t-k}(\chi E[x_k \alpha_k|e_t])$$

$$x_t + \chi \zeta(e_t)(\lambda + \lambda^2 + \lambda^3 + \ldots + \lambda^{t-1}).$$

To get the second equation, we exploit the fact that f_k is independent of x_t as is $f_k(t-1)x_k$. The third equation comes from the definition of $\zeta(e_t)$. To interpret this equation, notice that at time k, associativeness results in a selective sampling that has an effect equal to the evocativeness, $\zeta(e_t)$. But as we have seen, the impact of recall mistakes on beliefs depends on λ. In the formula we see that selectively recalling the events at time k has impact $\lambda^{t-k} \zeta(e_t)$. Taking $t \to \infty$ for simplicity, the impact of selective recall is

$$\chi \zeta(e_t)(\lambda + \lambda^2 + \lambda^3 + \ldots) = \chi \zeta(e_t) \frac{\lambda}{1 - \lambda}.$$

Therefore, as λ increases, the importance of selective recall increases. Intuitively, when λ is large, the triggering of certain types of memories over others has bigger impacts because the past matters more. We, therefore, see two basic properties of λ. It both measures extent of overreaction and how slowly individuals
adjust their memory mistakes. These two observations are especially interesting since λ can be measured in standard data sets.25

IV. APPLICATION TO CONSUMPTION

Having developed the general results, I now apply the model to the consumption decision of individuals.26 To allow for differences in aggregate and microbehavior, I will consider an economy populated with a pool of infinitely lived individuals indexed by i. Each person receives income y_{it} and consumes c_{it}. I assume that people maximize discounted (subjective) expected utility, where the discount rate δ is equal to the risk-free rate r. I will further assume quadratic utility and no borrowing constraints. This suggests that in expectation consumption will be equalized across time. In the current model, this allows us to write consumption as

$$c_{it} = \frac{r}{1 + r} A_{it} + \hat{y}_{it}^R,$$

where $A_0 = 0$ and $A_{i(t+1)} = (1 + r)(A_{it} + y_{it} - c_{it})$ is the assets. Differencing across time gives

$$\Delta c_{it} = \frac{1}{1 + r} \Delta \hat{y}_{it}^R + y_{it(t-1)} - \hat{y}_{it(t-1)} = \frac{1}{1 + r} \Delta \hat{y}_{it}^R + err_{it(t-1)}^R.$$

In other words, the change in consumption is proportional to the change in income expectations plus the time $t - 1$ forecast error. This is intuitive since permanent income considerations completely determine consumption in this model.

Now, suppose that the income process is the sum of two components: one specific to the individual and an aggregate component. Letting \hat{y}_t be the aggregate component, and y_{it}^0 be the individual specific one, we write $y_{it} = y_{it}^0 + \alpha_i \hat{y}_t$, where α_i measures how much the aggregate shock influences the individual. Both income processes follow the AR(1) plus noise process as in equation (1). I further assume that all the individual income shocks, both transitory and permanent, are independent across individuals. This guarantees that the only correlation between

25 Carroll and Samwick [1995] present a technique that allows us to estimate λ. They notice that the variance of $\text{var} (y_{t - y_{t - d}}) = \sigma_y^2 + 2\sigma_y^2 \sigma_r^2$. By computing the square of this difference for various d and regressing them on d, one can back out the variances.

26 Mullainathan [1998] presents an application to asset pricing as well.
people occurs through the aggregate process.27 All individuals observe the same aggregate events, which as before convey information about aggregate income. Each individual also observes specific events that convey information about the specific income process. In short, each individual observes two processes, an individual and an aggregate one, with each process replicating the stochastic process for y_t that we have discussed so far.

In this simple Permanent Income setup, consumption changes should be unpredictable. Since they essentially represent belief changes, one should not be able to predict them on the basis of lagged information available to consumers. In contrast, the errors of the forgetful forecaster lead to consumption predictability, and the pattern of this predictability can be pinned down under certain conditions.

Prediction 1. Let \tilde{c}_t be aggregate consumption. Suppose that

a. Personal events are highly memorable and aggregate events are not very memorable; and

b. α_t is small, then at the micro level,

\[\text{cov}(\Delta c_{i(t+k)}, \Delta y_{it}) < 0 \]

\[\frac{\partial \text{cov}(\Delta c_{i(t+k)}, \Delta y_{it})}{\partial \alpha_t} < 0 \]

\[\frac{\partial \text{cov}(\Delta c_{i(t+k)}, \Delta y_{it})}{\partial \lambda_t} > 0; \]

while at the aggregate level,

\[\text{cov}(\Delta \tilde{c}_{t+k}, \Delta \tilde{y}_t) > 0. \]

To see how this prediction works, note that

\[\text{cov}(\Delta c_{i(t+k)}, \Delta y_{it}) = E[\Delta \hat{y}_{it+k}^R \Delta y_{it}] + E[err_{i(t+k-1)}^m \Delta y_{it}]. \]

Taking the first term, we can break it into the component due to the aggregate shock and the parts due to the idiosyncratic component:

\[E[\Delta \hat{y}_{it+k}^R \Delta y_{it}] = E[\Delta \hat{y}_{it+k}^{0R} \Delta y_{it}^0] + \alpha_t^2 E[\Delta \hat{y}_{it+k}^R \Delta y_{it}^0], \]

27 There is a slight oddness in the results here. Income is normally distributed meaning that it might well be negative. Using a log-normal distribution would generate all the results here but with added technical complications. The goal here is simply to illustrate the kinds of results that arise rather than to flesh out a structural model.
where because of independence, I have dropped terms such as $E[\Delta \tilde{y}_{i(t+k)}\Delta \tilde{y}_t]$. Applying Proposition 5, we know that the first term here is negative (we have assumed that personal events are very memorable), and that the second term is positive (we have assumed that aggregate events are easily forgotten). Therefore, if α_i is small, the whole expression is negative. The second term in the expression is

$$E[err_{i(t+k-1)}^m \Delta y_{t}] + \alpha_i^2 E[err_{i(t+k-1)}^m \Delta \tilde{y}_{it}],$$

where $err_{i(t+k-1)}^m$ is the memory error for the idiosyncratic income component and $err_{i(t+k-1)}^m$ is the memory error for the aggregate component. Just as in the proof of Proposition 5, these correlations are negative when events are memorable and positive when events are easy to forget. Therefore, the first term here is negative, and the second term is positive with the smallness of α_i generating a negative sign for the sum. Putting this all together gives $\text{cov}(\Delta C_{i(t+k)}, \Delta y_{it}) < 0$. The partial with respect to λ_i comes clearly from Proposition 5, whereas the partial with respect to α_i comes from the fact that the aggregate contribution to the covariance is positive.

Suppose now that we aggregate up consumption and income. Since the idiosyncratic components of income and its forecasts are iid across people, aggregation produces zero for these. This gives

$$\text{cov}(\Delta \tilde{c}_{i(t+k)}, \Delta \tilde{y}_t) = \alpha \bar{\alpha}^2 E[\Delta \tilde{y}_{i(t+k)}^R] + \alpha \bar{\alpha}^2 E[err_{i(t+k-1)}^m \Delta \tilde{y}_{it}],$$

where $\bar{\alpha}$ is the average of α_i. Reapplying Proposition 5 as before tells us that this term will be positive. This establishes the aggregate results.

Intuitively, overreaction dominates for the idiosyncratic components of income since these are memorable. The dominant effect is that individuals overreact to their private information. Their boss calls them in, tells them that they have a bright future, and this causes them to selectively recall other information that makes them think they have high ability, and hence, high permanent income. At the micro level, the smallness of α_i guarantees that the reaction to the aggregate information does not matter. As one aggregates up, the idiosyncratic overreactions cancel out. Macrocovariances, therefore, depend on recall of the aggregate component. Because aggregate information is forgotten, there is underreaction to it. This leads to a positive covariance at the aggregate level.
The first assumption of differential memorability can be justified only by appeal to intuition (or perhaps through surveys): personal events may hold more memorability for consumers because they deal with many more everyday events than aggregate events. The second assumption receives some support in the data, as Pischke [1995] and others have argued that the aggregate component of individual income is small.

At the micro level, the first part of this prediction resembles "rule-of-thumb" consumers, ones who consume more of their income than permanent income considerations would justify. The prediction has generally, though not always, found support in the literature [Hall and Mishkin 1982; Hayashi 1985a, 1985b; Jappelli and Pagano 1988; Mariger and Shaw 1990]. The second and third predictions, however, have not been tested so far as I know. Finally, the macro prediction has received support, as seen in Campbell and Mankiw [1989]. Deaton [1992] summarizes this evidence.

Now, suppose that we go back to a single individual, set \(\alpha_i = 0 \), and allow for several income streams. The marginal propensity to consume out of these different income streams will depend on the extent of that stream's evocativeness. Note, from Proposition 1, that the stronger the recruitment effect the larger the forecast error and hence stronger the mean reversion. Define \(y_{st} \) to be income stream \(s \) and \(MPC_s \) to be marginal propensity to consume out of stream \(s \). Then

Prediction 2. In general \(MPC_s \neq MPC_{s'} \). Moreover,

\[
MPC_s > MPC_{s'} \Rightarrow \text{cov}(\Delta c_t, \Delta y_{s(t-1)}) < \text{cov}(\Delta c_t, \Delta y_{s'(t-1)}).
\]

To see how this works, note that

\[
MPC_s = \text{cov}(\Delta c_t, \Delta y_{st}) = E[\Delta y_{st} \Delta y_{st}] + E[err_{st(t-1)} \Delta y_{st}].
\]

Since \(err_{st(t-1)} \) is independent of \(\Delta y_{st} \) we can drop the second term. This leaves us with the first term, which we can write as

\[
E[\Delta y_{st} \Delta y_{st}] = E[\Delta err_{st} \Delta y_{st}].
\]

The first term here is the appropriate MPC in the absence of any memory mistakes. The second term represents the distortion,

\[
E[err_{st} \Delta y_{st}] = \chi E[\ell(e) x] \frac{\lambda}{1 - \lambda}.
\]

This will in general be different for different income streams.
especially since $E[\kappa(e)x]$ will vary. In other words, streams that have high evocativeness, where information about earnings in that stream relies heavily on soft information that has many cues, will have larger MPCs. The implication for greater negative lagged correlation comes directly from the discussion to date. The greater $E[\kappa(e)x]$, the greater the overreaction, and hence the greater the correlation to lagged income changes.

Intuitively, the prediction follows because changes in different income streams evoke different “visceral” reactions. Empirically, differences in MPC has received some support [Thaler 1990]. Serious empirical difficulties arise, however. Empirical differences in MPCs may represent true differences in propensities to consume permanent income. Alternatively, they may represent differences in the informativeness of income changes. Yet another possibility is that they may represent differences in information between the econometrician and the individual due either to measurement error or private information. This makes testing such predictions heavily reliant on structural assumptions about the income process. On the other hand, the relationship between MPC and excess sensitivity has not been tested as far as I know, and the empirical difficulties here may be less severe.

V. CONCLUSION

There are several questions left open by this model. First, this paper has focused on the naive case. What does behavior in the sophisticated case look like? As pointed out in footnote 18, the deviations from full rationality become no less interesting in the sophisticated case. Another point to be made here is that in the case of outsiders manipulating memory limitations even if the mean effect is “taken out” due to sophistication, the possibility for manipulation can still have real effects. For example, if firms attempt to use advertising to manipulate memories but individuals attempt to undo it, the Nash Equilibrium can result in positive levels even though there will be no equilibrium distortion in beliefs. In other words, a standard “signal jamming” argument can be applied when advertising attempts to manipulate sophisticated players.

Second, associativeness as formulated in this paper has a failing. While current events can trigger related memories, the memories that one recalls cannot themselves trigger other mem-
ories, an extension I refer to as association chains. Allowing for such chains raises the possibility of multiple steady states in recall. Consider a world in which there are only two types of events, good and bad. For a fixed history, one possible steady state is that good events by chance have had high recall and bad events have had low recall. By rehearsal, good events also have high current recall probabilities r_{kt}. Such an individual appears optimistic since he systematically overrecalls good events. Moreover, when he encounters a good event, it will have higher recall in the future. The existing stock of good events have high recall and will, therefore, trigger this new event frequently through association chains, generating a great deal of rehearsal and raising its steady state recall probability. Similarly, a bad event, by virtue of its association chains containing mainly low recall probability bad events will tend toward a low recall steady state. This optimist, therefore, not only systematically recalls positive information, but he also has a propensity to better recall any good information he receives in the future. In other words, good information “sticks” to him, while bad information “slides” off him. Symmetrically, there would be a pessimistic steady state. To understand the local dynamics between these steady states, consider an optimist who encounters a long sequence of negative information. Their recency makes these bad events very memorable, and they form an association chain that can raise the recall probabilities of all bad events. Thus, a sequence of such events may push the individual to a pessimistic steady state. This sketch illustrates the possibilities of this approach.

To summarize, I have built a model of memory limitations that tries to capture the “technological limitations” imposed by memory. It is based on two basic facts drawn from scientific research on the topic: rehearsal and association. Interestingly, these two facts generate several of the experimentally found biases in decision making under uncertainty. This suggests that memory limitations may be an important component for realistic models attempting a unified treatment of bounded rationality. The model also generates relevant predictions in the application to consumption. Previously untested predictions also arise naturally that provide a way of testing the model. Beyond the theoretical extensions discussed above, there are also many other applications possible: advertising, subjective performance evaluation (where assessments of an individual may depend on intangible aspects of past performance), asset pricing, and bargaining
situations (where opponents may disagree on the past) are just a few examples.

Appendix

Lemma 1. The optimal forecast satisfies

\[
\hat{y}_t(h, e) = x_t + \sum_{k=1}^{t-1} [w_{k,t}x_k + (1 - w_{k,t})(y_k - y_{k-1})]
\]

\[
\hat{\sigma}_t^2(h, e) = \sigma_*^2 + \hat{\sigma}_{t-1}^2 \left(\frac{\sigma_*^2}{\hat{\sigma}_{t-1}^2 + \sigma_*^2} \right),
\]

where \(n_{st}\) is the error to truth ratio: \(\sigma_*^2/(\hat{\sigma}_t^2 + \sigma_*^2)\), and define:

\[w_{k,t} = \prod_{j=0}^{t-1} n_{s_{k+j}}.\]

In the limit,

\[
\lim_{t \to \infty} \sigma_*^2 = \frac{1}{2} \left(\sigma_v^2 + \sqrt{\sigma_v^2(\sigma_v^2 + 4\sigma_*^2)} \right)
\]

\[
\lim_{t \to \infty} w_{t(t+k)} = \lambda_k,
\]

where \(\lambda = \sigma_*^2/(\sigma_*^2 + \sigma_*^2)\).

Proof of Lemma 1. Computing the optimal forecast is a straightforward application of the Kalman filter; see Harvey [Chapter 4, 1993]. Given the forecast rule, computing the steady state requires setting \(\hat{\sigma}_t^2 = \hat{\sigma}_{t+1}^2 = \sigma_*^2:\)

\[
\sigma_*^2 = \sigma_v^2 + \sigma_*^2 \left(\frac{\sigma_*^2}{\sigma_v^2 + \sigma_*^2} \right).
\]

Solving the resulting quadratic provides

\[
\sigma_*^2 = \frac{1}{2} \left(\sigma_v^2 + \sqrt{\sigma_v^2(\sigma_v^2 + 4\sigma_*^2)} \right).
\]

As \(t \to \infty\), \(n_{kt} \to \sigma_*^2/(\sigma_*^2 + \sigma_*^2)\) meaning that \(w_{kt} \to \lambda^{t-k}.\)

Lemma 2. Forgetting probabilities satisfy

\[
E[f_{k(t+j)}|x_k|e_t] = \begin{cases} 0 & \text{if } k > t \\ \frac{f - \chi^\gamma(e_t)}{1 - \rho'} (1 - \rho')x_t & \text{if } k = t \\ -\rho'\chi^\gamma(e_t) & \text{if } k < t. \end{cases}
\]

28. A derivation for the steady state can be found in Muth [1960].
Proof of Lemma 2. When \(k > t \), \(f_{k(t+j)}x_k \) depends only on events at time greater than \(t \). Independence across time, therefore, shows that \(E[f_{k(t+j)}x_k|e_t] = 0 \) in this case. When \(k = t \),

\[
E[f_{t(t+j)}x_t|e_t] = x_t E[f_{t(t+j)}|e_t].
\]

Breaking this apart

\[
E[f_{t(t+j)}|e_t] = E[f - \chi a_{t(t+j)}|e_t] + \rho E[f - \chi a_{t(t+j-1)}|e_t] + \cdots + \rho^{t-1}E[f - \chi a_{t(t+1)}|e_t].
\]

This equals \(((1 - \rho^j)/(1 - \rho))(f - \chi \gamma(e_t))\). Finally, when \(k < t \), note that

\[
E[x_k f_{k(t+j)}|e_t] = E[x_k(f - \chi a_{k(t+j)}|e_t)] + \rho E[x_k(f - \chi a_{k(t+j-1)}|e_t)] + \cdots + \rho^j E[x_k(f - \chi a_{k(t+1)}|e_t)] + \cdots + \rho^{t-j-1}E[x_k(f - \chi a_{k(t+1)})].
\]

By independence, all terms here are zero except \(\rho^j E[x_k(f - \chi a_{k(t)})|e_t] \). Even here, \(E[x_k f|e_t] = 0 \). This gives \(-\chi \rho^j E[a_{kt} x_k|e_t] = -\chi \rho^j \gamma(e_t)\).

Lemma 3. Conditioning on \(e_t \), time \(t \) beliefs satisfy

\[
E[\hat{y}_t^R|e_t] = x_t + \chi \gamma(e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}).
\]

Proof of Lemma 3. Notice that \(\hat{y}_t^R = \hat{y}_t - \text{err}_t^m \). This allows writing

\[
E[\hat{y}_t^R|e_t] = E[\hat{y}_t|e_t] - E[\text{err}_t^m|e_t].
\]

Now, \(E[\hat{y}_t|e_t] = x_t \). The second term can be written as

\[
-E[\text{err}_t^m|e_t] = -\sum_{k=1}^{t-1} \lambda^{t-k} E[x_k f_{kt}|e_t].
\]

By Lemma 2, \(E[x_k f_{kt}|e_t] = -\chi \gamma(e_t) \). Substitution provides that

\[
E[\hat{y}_t^R|e_t] = x_t + \chi \gamma(e_t)(\lambda + \lambda^2 + \cdots + \lambda^{t-1})
\]

\[
= x_t + \chi \gamma(e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}).
\]
Lemma 4. Conditioning on e_t, time $t + j$ beliefs satisfy

$$E[\hat{y}_{t+j}^R | e_t] = x_t \left(1 - \frac{f - \chi^\prime_t(e_t)}{1 - \rho} (1 - \rho^j)\lambda^j \right)$$

$$+ (\rho \lambda)^j \chi^\prime_t (e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}).$$

Proof of Lemma 4. Again, notice that $\hat{y}_{t+j}^R = \hat{y}_t - err_{t+j}^m$. The conditional expectation of the first term with respect to e_t equals x_t. The conditional expectation of the second term equals

$$-E[err_{t+j}^m | e_t] = - \sum_{k=1}^{t+j-1} \lambda^{t+j-k} E[x_k f_{k(t+j)} | e_t].$$

Applying Lemma 2 tells us that the summands in this summation are zero for $k > t$. This leaves

$$-\lambda^t x_t E[f_{kt} | e_t] - \lambda^t \sum_{k=1}^{t-1} \lambda^{t-k} E[x_k f_{k(t+j)} | e_t].$$

Again applying Lemma 2 to $E[x_k f_{k(t+j)} | e_t]$ provides

$$-\lambda^t x_t E[f_{kt} | e_t] + \lambda^t \rho^j \chi^\prime_t (e_t) \sum_{k=1}^{t-1} \lambda^{t-k}$$

$$= -\lambda^t x_t E[f_{kt} | e_t] + (\lambda \rho)^j \chi^\prime_t (e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}).$$

Putting these together,

$$-E[err_{t+j}^m | e_t] = x_t (1 - \lambda^t E[f_{k(t+j)} | e_t]) + (\lambda \rho)^j \chi^\prime_t (e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}).$$

Finally, Lemma 2, allows us to write $E[f_{k(t+j)} | e_t] = ((f - \chi^\prime_t(e_t))/(1 - \rho))(1 - \rho^j)$. Substitution gives the stated formula:

$$E[\hat{y}_{t+j}^R | e_t] = x_t \left(1 - \frac{f - \chi^\prime_t(e_t)}{1 - \rho} (1 - \rho^j)\lambda^j \right)$$

$$+ (\rho \lambda)^j \chi^\prime_t (e_t) \frac{\lambda}{1 - \lambda} (1 - \lambda^{t-1}).$$
Lemma 5. The following are true:

\[\text{sign}(E[x_k c(x - x_k)|x]) = \text{sign}(x) \]

\[\text{sign}(E[n_k c(n - n_k)|n]) = \text{sign}(n). \]

Proof of Lemma 5. I will show the first of the two equations, the proof for the second is exactly the same:

\[E[x_k c(x - x_k)] = \int_{-x}^{x} x_k c(x - x_k) \, dF_k. \]

Breaking the integral at zero and applying symmetry of the \(x \) distribution gives

\[\int_{0}^{\infty} x_k [c(x - x_k) - c(x + x_k)] \, dF_k. \]

Since \(x_k > 0 \) in this equation, the sign of it equals the \(\text{sign}(c(x - x_k) - c(x + x_k)) \). Now,

\[c(x - x_k) - c(x + x_k) > 0 \]

if and only if \(x \) is closer to \(x_k \) than to \(-x_k\), which happens if and only if \(x \) is positive. Formally, since \(c(\cdot) \) measures closeness, \(c(x - x_k) > c(x + x_k) \) if and only if \(|x - x_k| > |x + x_k| \). Squaring both sides gives

\[(x - x_k)^2 - (x + x_k)^2 > 0 \iff (2x)(2x_k) > 0. \]

Since \(x_k > 0 \), this is equivalent to \(x > 0 \). This shows that

\[\text{sign}(E[x_k c(x - x_k)]) = \text{sign}(x). \]

\[\blacksquare \]

Lemma 6. Associativeness implies that

\[E[x_k x_i a_{kt}] > 0. \]

Proof of Lemma 6. Note that

\[E[x_k x_i a_{kt}] = \int_{-x}^{x} \int_{-x}^{x} x_k x_i c(x_k - x_i) \, dF_k \, dF_i. \]
Breaking apart the integrals allows us to write
\[
\left(\int_{0}^{\infty} \int_{0}^{\infty} + \int_{-\infty}^{0} \int_{0}^{\infty} + \int_{0}^{\infty} \int_{-\infty}^{0} + \int_{-\infty}^{\infty} \right) x_k x_c(x_k - x_t) dF_k dF_t.
\]

Perform the integral transformation in the second and third integrals of \(x_k \mapsto -x_k \) and \(x_t \mapsto -x_t \). By symmetry of the \(F \) distribution and \(c(\cdot) \), this becomes
\[
2 \left(\int_{0}^{\infty} \int_{0}^{\infty} + \int_{-\infty}^{0} \int_{0}^{\infty} \right) x_k x_c(x_k - x_t) dF_k dF_t
\]
\[
= 2 \int_{0}^{\infty} \left(\int_{0}^{\infty} x_k c(x_k - x_t) dF_k + \int_{-\infty}^{0} x_k c(x_k - x_t) dF_k \right) x_t dF_t.
\]
Performing the transformation \(x_k \mapsto -x_k \) now gives
\[
2 \int_{0}^{\infty} \int_{0}^{\infty} x_k [c(x_k - x_t) - c(x_k + x_t)] x_t dF_t
\]
which as we saw in the previous proof is positive since for positive \(x_t, c(x_k - x_t) > c(x_k + x_t) \).

\[\text{LEMMA 7. Forecast errors satisfy} \]
\[
err_{t+1}^m = \rho \lambda err_t^m + \sum_{k=1}^{t} \lambda^{t+1-k} x_k (f - \chi a_{h(t+1)}).
\]

\[\text{Proof of Lemma 7. Write} \]
\[
err_{t+1}^m = \sum_{k=1}^{t} \lambda^{t+1-k} x_k f_{k(t+1)}.
\]
Using the fact that \(f_{k(t+1)} = \rho f_{k(t)} + f - \chi a_{k(t+1)} \), we get
\[
err_{t+1}^m = \rho \sum_{k=1}^{t-1} \lambda^{t+1-k} x_k f_{k(t)} + \sum_{k=1}^{t} \lambda^{t+1-k} (f - \chi a_{k(t+1)}).
\]
Substituting in for err_t^m in the first term gives

$$\text{err}_{t+1}^m = \rho \text{err}_t^m \sum_{k=1}^{t} \lambda^{t+1-k}(\hat{f} - \chi \alpha_{kt+1}),$$

completing the proof.

Lemma 8. The variance, $\text{var } [err_t^m|e_t]$ is less than $\text{var } [err_t'|e_t]$ for small χ and increases with χ.

Proof of Lemma 8. Note that $\text{var } [err_t^m|e_t]$ equals

$$\sum_{k=1}^{t-1} \sum_{j=1}^{t-1} \lambda^{2t-k-j} E[x_k x_j f_{kt} f_{jt}|e_t].$$

When χ is close to zero, notice that the nondiagonal terms, where $k \neq j$ are also close to zero. To see this, notice that these terms equal

$$E[(f + \rho f_{kt-1} - \chi \alpha_{kt})(f + \rho f_{jt-1} - \chi \alpha_{jt})x_k x_j |e_t] = \rho^2 E[f_{kt-1}, f_{jt-1} x_k x_j] + \chi^2 E[\alpha_{kt}, \alpha_{jt}, x_k x_j |e_t] \approx 0.$$

The last approximation is because the second term goes directly to zero as χ does, and the first term goes to zero since f_{kt-1} and f_{jt-1} only depend on each other through associativeness, as seen in Lemma 2. Since the nondiagonal terms are close to zero, let us focus on the diagonal terms:

$$E[(f + \rho f_{kt-1} - \chi \alpha_{kt})^2 x_k^2 |e_t].$$

Again, as χ goes to zero, this becomes a constant (as usual, taking $t \to \infty$), $(f/(1 - \rho))^2$ times x_k^2. And, since $f/(1 - \rho)$ is less than 1, this whole term will be less than $E[x_k^2]$. Therefore,

$$\text{var } [err_t'|e_t] = \sum_{k=1}^{t-1} \lambda^{2t-2k} E[x_k^2] > \sum_{k=1}^{t-1} \lambda^{2t-2k} \left(\frac{f}{1 - \rho}\right)^2 E[x_k^2] = E[err_t^m|e_t].$$

To see the increase with χ, first note that in the derivation above, as χ increases, the nondiagonal elements increase. Similarly, in the derivation of the diagonal elements, these also increase with χ. The sum of these terms, therefore, rises with χ.

Finally, the nondiagonal terms $(k \neq j)$ illustrate an impor-
tant phenomenon. Consider the var \(\text{var} [\text{err}_t^m | e_t] = \sum_{k=1}^{t-1} \lambda^{2t-2k} \text{E}[x_k^2] \). It contains no such cross terms. They exist only because of associativeness. Lemma 6 tells us that the cross terms will be positive. This is intuitive: associativeness raises variance by systematically introducing a correlation in the recalled information. When these cross terms are sufficiently large (for example, as \(\chi \) gets large), then var \(\text{var} [\text{err}_t^m | e_t] \) may even be larger than var \(\text{var} [\text{err}_t^m | e_t] \).

Proposition 3. Forecast errors are negatively correlated with the information in the latest event:

\[
\text{cov}(y_t - \hat{y}_t^R, x_t) = \text{cov}(\text{err}_t^R, x_t) < 0.
\]

The extent of this overreaction increases with \(\chi \) and \(\lambda \):

\[
\frac{\partial \text{cov}(\text{err}_t^R, x_t)}{\partial \chi} < 0 \quad \text{and} \quad \frac{\partial \text{cov}(\text{err}_t^R, x_t)}{\partial \lambda} < 0.
\]

Proof of Proposition 3. Note that \(\text{err}_t^R = \text{err}_t + \text{err}_t^m \) and that \(\text{err}_t \) is independent of \(x_t \). Therefore, \(\text{cov}(\text{err}_t^R, x_t) = \text{cov}(\text{err}_t^m, x_t) \). Calculating this,

\[
\text{cov}(\text{err}_t^m, x_t) = \sum_{k=1}^{t-1} \lambda^{t-k} \text{E}[f_{kt} x_k x_t].
\]

Using the fact that \(x_k \) and \(x_t \) are independent, we can write the summand as \(-\chi \text{E}[x_k x_t a_{kt}] \). Intuitively, \(\text{E}[x_k x_t a_{kt}] \) is positive because \(a_{kt} \) measures similarity. See Lemma 6. This implies that the overall covariance is negative. To get the comparative statics, let us complete the calculation:

\[
\text{E}[\text{err}_t^m x_t] = -\chi \text{E}[x_k x_t a_{kt}](\lambda + \lambda^2 + \cdots + \lambda^{t-1})
\]

\[
= -\chi \text{E}[x_k x_t a_{kt}] \frac{\lambda(1 - \lambda^{t-1})}{1 - \lambda}.
\]

Partial differentiation shows that this decreases with \(\chi \) and \(\lambda \). The effect of \(\lambda \) is interesting. It happens because when \(\lambda \) is large, the selective sampling of past memories becomes more important, since these memories enter with greater weight into the forecast rule.

Proposition 4. Let \(T > t \). When events are very memorable (\(f \) low, \(\chi \) and \(\rho \) large), then

\[
\text{cov}(\text{err}_t^R, \text{err}_{t+1}^R) > 0.
\]
Proof of Proposition 4. (Sketch) I will present a proof for the case where $t \to \infty$ to abstract from details. The proof for the finite t case is exactly the same but with more constants (that tend to zero as t gets large) involved. The general strategy of the proof is as follows: (1) use the fact that err_{t+1}^m can be written as a function of err_t^m plus some terms; (2) substitute into $E[\text{err}_{t+1}^m \text{err}_t^m]$ to get a $E[\text{err}_{t}^m \text{err}_{t}^m]$ plus some terms that resemble $E[x_k \text{err}_t^m]$; (3) these generate opposing signs so that the variance term tends to dominate whenever the probability of forgetting is small.

For the first step in the proof, see Lemma 7 which shows that

$$\text{err}_{t+1}^m = p\lambda \text{err}_t^m + \sum_{k=1}^{t-1} x_k(f - \chi a_{k(t+1)}).$$

Substitution into $E[\text{err}_{t+1}^m \text{err}_t^m]$ gives (step 2)

$$p\lambda \text{var} (\text{err}_t^m) + \sum_{k=1}^{t} \lambda^{t+1-k} E[x_k(f - \chi a_{k(t+1)}) \text{err}_t^m].$$

Substitution for the latter gives

$$p\lambda \text{var} (\text{err}_t^m) + \lambda E[(f - \chi a_{t(t+1)}) x_t \text{err}_t^m]$$

$$+ \sum_{k=1}^{t-1} \sum_{j=1}^{t-1} \lambda^{2t+1-k-j} E[x_k x_j (f - \chi a_{k(t+1)}) f_{jt}].$$

The third term can be written as

$$\sum_{k=1}^{t-1} \lambda^{2t+1-2k} E[x_k^2(f - \chi) a_{k(t+1)} f_{kt}]$$

$$+ \sum_{k=1}^{t-1} \sum_{j=1}^{t-1} \lambda^{2t+1-k-j} \rho^{t-k} E[x_k x_j (f - \chi a_{k(t+1)})(f - \chi a_{jk})],$$

where since x_k and x_j are independent this can be written as

$$\sum_{k=1}^{t-1} \lambda^{2t+1-2k} E[x_k^2(f - \chi) a_{k(t+1)} f_{kt}]$$

$$- \sum_{k=1}^{t-1} \sum_{j=1}^{t-1} \lambda^{2t+1-k-j} \rho^{t-k} E[x_k x_j (f - \chi a_{k(t+1)}) \chi a_{jk}].$$
Putting these terms together gives

\[
\rho \lambda \text{ var } (\text{err}_t^m) + \sum_{k=1}^{t-1} \lambda^{2t+1-2k} E[x_k^2(f - \chi a_{k(t+1)})f_{kt}] \\
+ \lambda E[(f - \chi a_{k(t+1)})x_t \text{err}_t^m] \\
- \sum_{k=1}^{t-1} \sum_{j=1}^{k-1} \lambda^{2t+1-k-j} \rho^{-k} E[x_k x_j (f - \chi a_{k(t+1)}) \chi a_{jk}].
\]

Now the first and second terms are clearly positive, where as the third and fourth term are clearly negative. The key insight is that the negative terms tend to zero as memorability gets large (as \(f \to 0\)) since these predicate on having forgotten \(x_t\) or \(x_k\). Therefore, when memorability is sufficiently high, the overall expression is positive.

Proposition 5. Suppose that forgetting probabilities are small, so that \(f\) is high and \(\rho\) and \(\chi\) are low. Then

\[(9) \quad \text{cov}[\Delta y_{t+1}, y_{t-1}] < 0.\]

When these probabilities are large, however,

\[(10) \quad \text{cov}[\Delta y_{t+1}, y_{t-1}] > 0.\]

When the covariance is negative, then a change in \(\lambda\) makes it more negative:

\[(11) \quad \frac{\partial \text{cov}[\Delta y_{t+1}, y_{t-1}]}{\partial \lambda} < 0.\]

Proof of Proposition 5. Now,

\[\Delta y_{t+1} = \Delta y_t - \text{err}_t^m + \text{err}_t^m,\]

and \(\Delta y_t\) is independent of all lagged information. Therefore, the covariance equals

\[E[\text{err}_t^m \Delta y_{t-1}] - E[\text{err}_{t+1}^m \Delta y_{t-1}].\]

From Lemma 7 we can write \(\text{err}_{t+1}^m\) in terms of \(\text{err}_t^m\). Substituting for this gives
\[(1 - \lambda \rho) E[x_{t-1}err_t^m] - \sum_{k=1}^{t} \lambda^{t-k+1} E[(f - \chi a_{k(t+1)})x_k x_{t-1}].\]

Reapplying Lemma 7 to \(err_t^m\) gives

\[(1 - \lambda \rho) \lambda \rho E[x_{t-1}err_t^m] + (1 - \lambda \rho) \sum_{k=1}^{t-1} \lambda^{t-k} E[x_k x_{t-1}(f - \chi a_k)] - \sum_{k=1}^{t} \lambda^{t-k+1} E[(f - \chi a_{k(t+1)})x_k x_{t-1}].\]

Note that \(x_k\) and \(x_{t-1}\) are independent in the summations for \(k \neq t - 1\), leaving

\[(1 - \lambda \rho) \lambda \rho E[x_{t-1}err_t^m] + (1 - \lambda \rho) \lambda E[x_{t-1}^2(f - \chi a_{t-1})] - \lambda^2 E[x_{t-1}^2(f - \chi a_{t-1})].\]

Define \(C\) to be \(E[x_{t-1}^2(f - \chi a_{(t-1)}t)]\) which also equals \(E[x_{t-1}^2(f - \chi a_{(t-1)}(t+1))]\). This gives

\[(1 - \lambda \rho) \lambda \rho E[x_{t-1}err_t^m] + C\lambda (1 - \lambda (1 + \rho)).\]

Substituting for the first part from the proof of Proposition 3 gives

\[(12) \quad -C \chi (1 - \lambda^{-1}) \frac{1}{1 - \lambda} E[a_{kt} x_k x_t] + C\lambda (1 - \lambda (1 + \rho)).\]

Suppose that events are very memorable, so that the forgetting probability \(f\) is low and \(\chi\) and \(\rho\) are high. Then \((\lambda (1 - \lambda (1 + \rho)) C = (\lambda (1 - \lambda (1 + \rho)) E[x_{t-1}^2(f - \chi a_{(t-1)}t)]\) is small or even negative. The first term is already negative, so that in this case the correlation is negative. Suppose, on the other hand, that events are easy to forget so that \(f\) is high and \(\chi\) and \(\rho\) are low. Then, the first term tends to zero, while the second term implies a positive correlation.

Differentiating with respect to \(\lambda\) gives

\[-C \chi (1 - \lambda^{-1}) \frac{1}{1 - \lambda} E[a_{kt} x_k x_t] + C(1 - 2\lambda (1 + \rho))\]

which is the same as equation (12) except (i) it has been divided through by \(\lambda\) and (ii) \(1 - \lambda (1 + \rho)\) has been replaced by \(1 - 2\lambda (1 + \rho)\). The first has no effect on the sign, and the second only makes
it more negative since C is positive and $1 - \lambda(1 + \rho) > 1 - 2\lambda(1 + \rho)$. Consequently, if equation (12) is negative, the derivative with respect to λ is also negative.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND NATIONAL BUREAU OF ECONOMIC RESEARCH

REFERENCES

