Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination

By Marianne Bertrand and Sendhil Mullainathan

We study race in the labor market by sending fictitious resumes to help-wanted ads in Boston and Chicago newspapers. To manipulate perceived race, resumes are randomly assigned African-American- or White-sounding names. White names receive 50 percent more callbacks for interviews. Callbacks are also more responsive to resume quality for White names than for African-American ones. The racial gap is uniform across occupation, industry, and employer size. We also find little evidence that employers are inferring social class from the names. Differential treatment by race still appears to still be prominent in the U.S. labor market. (JEL J71, J64).

Every measure of economic success reveals significant racial inequality in the U.S. labor market. Compared to Whites, African-Americans are twice as likely to be unemployed and earn nearly 25 percent less when they are employed (Council of Economic Advisers, 1998). This inequality has sparked a debate as to whether employers treat members of different races differentially. When faced with observably similar African-American and White applicants, do they favor the White one? Some argue yes, citing either employer prejudice or employer perception that race signals lower productivity. Others argue that differential treatment by race is a relic of the past, eliminated by some combination of employer enlightenment, affirmative action programs and the profit-maximization motive. In fact, many in this latter camp even feel that stringent enforcement of affirmative action programs has produced an environment of reverse discrimination. They would argue that faced with identical candidates, employers might favor the African-American one.1 Data limitations make it difficult to empirically test these views. Since researchers possess far less data than employers do, White and African-American workers that appear similar to researchers may look very different to employers. So any racial difference in labor market outcomes could just as easily be attributed to differences that are observable to employers but unobservable to researchers.

To circumvent this difficulty, we conduct a field experiment that builds on the correspondence testing methodology that has been primarily used in the past to study minority outcomes in the United Kingdom.2 We send resumes in response to help-wanted ads in Chicago and Boston newspapers and measure callback for interview for each sent resume. We

1 This camp often explains the poor performance of African-Americans in terms of supply factors. If African-Americans lack many basic skills entering the labor market, then they will perform worse, even with parity or favoritism in hiring.

experimentally manipulate perception of race via the name of the fictitious job applicant. We randomly assign very White-sounding names (such as Emily Walsh or Greg Baker) to half the resumes and very African-American-sounding names (such as Lakisha Washington or Jamal Jones) to the other half. Because we are also interested in how credentials affect the racial gap in callback, we experimentally vary the quality of the resumes used in response to a given ad. Higher-quality applicants have on average a little more labor market experience and fewer holes in their employment history; they are also more likely to have an e-mail address, have completed some certification degree, possess foreign language skills, or have been awarded some honors. In practice, we typically send four resumes in response to each ad: two higher-quality and two lower-quality ones. We randomly assign to one of the higher- and one of the lower-quality resumes an African-American-sounding name. In total, we respond to over 1,300 employment ads in the sales, administrative support, clerical, and customer services job categories and send nearly 5,000 resumes. The ads we respond to cover a large spectrum of job quality, from cashier work at retail establishments and clerical work in a mail room, to office and sales management positions.

We find large racial differences in callback rates. Applicants with White names need to send about 10 resumes to get one callback whereas applicants with African-American names need to send about 15 resumes. This 50-percent gap in callback is statistically significant. A White name yields as many more callbacks than Whites with lower-quality resumes. On the other hand, having a higher-quality resume has a smaller effect for African-Americans. In other words, the gap between Whites and African-Americans widens with resume quality. While one may have expected improved credentials to alleviate employers’ fear that African-American applicants are deficient in some unobservable skills, this is not the case in our data.

The experiment also reveals several other aspects of the differential treatment by race. First, since we randomly assign applicants’ postal addresses to the resumes, we can study the effect of neighborhood of residence on the likelihood of callback. We find that living in a wealthier (or more educated or Whiter) neighborhood increases callback rates. But, interestingly, African-Americans are not helped more than Whites by living in a “better” neighborhood. Second, the racial gap we measure in different industries does not appear correlated to Census-based measures of the racial gap in wages. The same is true for the racial gap we measure in different occupations. In fact, we find that the racial gaps in callback are statistically indistinguishable across all the occupation and industry categories covered in the experiment. Federal contractors, who are thought to be more severely constrained by affirmative action laws, do not treat the African-American resumes more preferentially; neither do larger employers or employers who explicitly state that they are “Equal Opportunity Employers.” In Chicago, we find a slightly smaller racial gap when employers are located in more African-American neighborhoods.

The rest of the paper is organized as follows. Section I compares this experiment to earlier work on racial discrimination, and most notably to the labor market audit studies. We describe the experimental design in Section II and present the results in Section III, subsection A. In Section IV, we discuss possible interpretations of our results, focusing especially on two issues. First, we examine whether the

3 In creating the higher-quality resumes, we deliberately make small changes in credentials so as to minimize the risk of overqualification.

4 For ease of exposition, we refer to the effects uncovered in this experiment as racial differences. Technically, however, these effects are about the racial soundingness of names. We briefly discuss below the potential confounds between name and race. A more extensive discussion is offered in Section IV, subsection B.

5 These results contrast with the view, mostly based on nonexperimental evidence, that African-Americans receive higher returns to skills. For example, estimating earnings regressions on several decades of Census data, James J. Heckman et al. (2001) show that African-Americans experience higher returns to a high school degree than Whites do.
race-specific names we have chosen might also proxy for social class above and beyond the race of the applicant. Using birth certificate data on mother’s education for the different first names used in our sample, we find little relationship between social background and the name-specific callback rates. Second, we discuss how our results map back to the different models of discrimination proposed in the economics literature. In doing so, we focus on two important results: the lower returns to credentials for African-Americans and the relative homogeneity of the racial gap across occupations and industries. We conclude that existing models do a poor job of explaining the full set of findings. Section V concludes.

I. Previous Research

With conventional labor force and household surveys, it is difficult to study whether differential treatment occurs in the labor market. Armed only with survey data, researchers usually measure differential treatment by comparing the labor market performance of Whites and African-Americans (or men and women) for which they observe similar sets of skills. But such comparisons can be quite misleading.

Standard labor force surveys do not contain all the characteristics that employers observe when hiring, promoting, or setting wages. So one can never be sure that the minority and nonminority dimensions that might affect productivity in employers’ eyes, except for race. To accomplish this, researchers typically match auditors on several characteristics (height, weight, age, dialect, dressing style, hairdo) and train them for several days to coordinate interviewing styles. Another weakness of the audit studies is that they are not double-blind. Auditors know the purpose of the study.

Auditors tend to perform worse on average: they are less likely to get called back for a second interview and, conditional on getting called back, less likely to get hired. These audit studies provide some of the cleanest nonlaboratory evidence of differential treatment by race. But they also have weaknesses, most of which have been highlighted in Heckman and Siegelman (1992) and Heckman (1998). First, these studies require that both members of the auditor pair are identical in all dimensions that might affect productivity in employers’ eyes, except for race. To accomplish this, researchers typically match auditors on several characteristics (height, weight, age, dialect, dressing style, hairdo) and train them for several days to coordinate interviewing styles. Yet, critics note that this is unlikely to erase the numerous differences that exist between the auditors in a pair.

Another weakness of the audit studies is that they are not double-blind. Auditors know the purpose of the study. As Turner et al. (1991) and Rouse (2000), for example, examine the effect of blind auditioning on the hiring process of orchestras. By observing the treatment of female candidates before and after the introduction of blind auditions, they try to measure the amount of sex discrimination. When such pseudo-experiments can be found, the resulting study can be very informative; but finding such experiments has proven to be extremely challenging.

A different set of studies, known as audit studies, attempts to place comparable minority and White actors into actual social and economic settings and measure how each group fares in these settings. Labor market audit studies send comparable minority (African-American or Hispanic) and White auditors in for interviews and measure whether one is more likely to get the job than the other. While the results vary somewhat across studies, minority auditors tend to perform worse on average: they are less likely to get called back for a second interview and, conditional on getting called back, less likely to get hired.

Michael Fix and Marjery A. Turner (1998) provide a survey of many such audit studies. Earlier hiring audit studies include Jerry M. Newman (1978) and Shelby J. McIntyre et al. (1980). Three more recent studies are Harry Cross et al. (1990), Franklin James and Steve W. DelCastillo (1991), and Turner et al. (1991). Heckman and Peter Siegelman (1992), Heckman (1998), and Altonji and Blank (1999) summarize these studies. See also David Neumark (1996) for a labor market audit study on gender discrimination.
The first day of training also included an introduction to employment discrimination, equal employment opportunity, and a review of project design and methodology. This may generate conscious or subconscious motives among auditors to generate data consistent or inconsistent with their beliefs about race issues in America. As psychologists know very well, these demand effects can be quite strong. It is very difficult to insure that auditors will not want to do "a good job." Since they know the goal of the experiment, they can alter their behavior in front of employers to express (indirectly) their own views. Even a small belief by auditors that employers treat minorities differently can result in measured differences in treatment. This effect is further magnified by the fact that auditors are not in fact seeking jobs and are therefore more free to let their beliefs affect the interview process.

Finally, audit studies are extremely expensive, making it difficult to generate large enough samples to understand nuances and possible mitigating factors. Also, these budgetary constraints worsen the problem of mismatched auditor pairs. Cost considerations force the use of a limited number of pairs of auditors, meaning that any one mismatched pair can easily drive the results. In fact, these studies generally tend to find significant differences in outcomes across pairs.

Our study circumvents these problems. First, because we only rely on resumes and not people, we can be sure to generate comparability across race. In fact, since race is randomly assigned to each resume, the same resume will sometimes be associated with an African-American name and sometimes with a White name. This guarantees that any differences we find are caused solely by the race manipulation. Second, the use of paper resumes insulates us from demand effects. While the research assistants know the purpose of the study, our protocol allows little room for conscious or subconscious deviations from the set procedures. Moreover, we can objectively measure whether the randomization occurred as expected. This kind of objective measurement is impossible in the case of the previous audit studies. Finally, because of relatively low marginal cost, we can send out a large number of resumes. Besides giving us more precise estimates, this larger sample size also allows us to examine the nature of the differential treatment from many more angles.

II. Experimental Design

A. Creating a Bank of Resumes

The first step of the experimental design is to generate templates for the resumes to be sent. The challenge is to produce a set of realistic and representative resumes without using resumes that belong to actual job seekers. To achieve this goal, we start with resumes of actual job searchers but alter them sufficiently to create distinct resumes. The alterations maintain the structure and realism of the initial resumes without compromising their owners.

We begin with resumes posted on two job search Web sites as the basis for our artificial resumes. While the resumes posted on these Web sites may not be completely representative of the average job seeker, they provide a practical approximation. We restrict ourselves to people seeking employment in our experimental cities (Boston and Chicago). We also restrict ourselves to four occupational categories: sales, administrative support, clerical services, and customer services. Finally, we further restrict ourselves to resumes posted more than six months prior to the start of the experiment. We purge the selected resumes of the person’s name and contact information.

During this process, we classify the resumes within each detailed occupational category into two groups: high and low quality. In judging resume quality, we use criteria such as labor market experience, career profile, existence of gaps in employment, and skills listed. Such a classification is admittedly subjective but it is made independently of any race assignment on the resumes (which occurs later in the experimental design). To further reinforce the quality gap between the two sets of resumes, we add to each high-quality resume a subset of the following features: summer or while-at-school employment experience, volunteering experience, extra computer skills, certification degrees, foreign language skills, honors, or some military

11 The sites are www.careerbuilder.com and www.americasjobbank.com.
12 In practice, we found large variation in skill levels among people posting their resumes on these sites.
experience. This resume quality manipulation needs to be somewhat subtle to avoid making a higher-quality job applicant overqualified for a given job. We try to avoid this problem by making sure that the features listed above are not all added at once to a given resume. This leaves us with a high-quality and a low-quality pool of resumes.13

To minimize similarity to actual job seekers, we use resumes from Boston job seekers to form templates for the resumes to be sent out in Chicago and use resumes from Chicago job seekers to form templates for the resumes to be sent out in Boston. To implement this migration, we alter the names of the schools and previous employers on the resumes. More specifically, for each Boston resume, we use the Chicago resumes to replace a Boston school with a Chicago school.14 We also use the Chicago resumes to replace a Boston employer with a Chicago employer in the same industry. We use a similar procedure to migrate Chicago resumes to Boston.15 This produces distinct but realistic looking resumes, similar in their education and career profiles to this subpopulation of job searchers.16

B. Identities of Fictitious Applicants

The next step is to generate identities for the fictitious job applicants: names, telephone numbers, postal addresses, and (possibly) e-mail addresses. The choice of names is crucial to our experiment.17 To decide on which names are uniquely African-American and which are uniquely White, we use name frequency data calculated from birth certificates of all babies born in Massachusetts between 1974 and 1979. We tabulate these data by race to determine which names are distinctively White and which are distinctively African-American. Distinctive names are those that have the highest ratio of frequency in one racial group to frequency in the other racial group.

As a check of distinctiveness, we conducted a survey in various public areas in Chicago. Each respondent was asked to assess features of a person with a particular name, one of which is race. For each name, 30 respondents were asked to identify the name as either “White,” “African-American,” “Other,” or “Cannot Tell.” In general, the names led respondents to readily attribute the expected race for the person but there were a few exceptions and these names were disregarded.18

The final list of first names used for this study is shown in Appendix Table A1. The table reports the relative likelihood of the names for the Whites and African-Americans in the Massachusetts birth certificates data as well as the recognition rate in the field survey.19 As Appendix Table A1 indicates, the African-American first names used in the experiment are quite common in the population. This suggests that by using these names as an indicator of race, we are actually covering a rather large segment of the African-American population.20

Applicants in each race/sex/city/resume quality cell are allocated the same phone number. This guarantees that we can precisely track employer callbacks in each of these cells. The phone lines we use are virtual ones with only a voice mailbox attached to them. A similar outgoing message is recorded on each of the voice mailboxes but each message is recorded by someone of the appropriate race and gender.

13 In Section III, subsection B, and Table 3, we provide a detailed summary of resume characteristics by quality level.

14 We try as much as possible to match high schools and colleges on quality and demographic characteristics.

15 Note that for applicants with schooling or work experience outside of the Boston or Chicago areas, we leave the school or employer name unchanged.

16 We also generate a set of different fonts, layouts, and cover letters to further differentiate the resumes. These are applied at the time the resumes are sent out.

17 We chose name over other potential manipulations of race, such as affiliation with a minority group, because we felt such affiliations may especially convey more than race.

18 For example, Maurice and Jerome are distinctively African-American names in a frequency sense yet are not perceived as such by many people.

19 So many of names show a likelihood ratio of ∞ because there is censoring of the data at five births. If there are fewer than five babies in any race/name cell, it is censored (and we do not know whether a cell has zero or was censored). This is primarily a problem for the computation of how many African-American babies have “White” names.

20 We also tried to use more White-sounding last names for White applicants and more African-American-sounding last names for African-American applicants. The last names used for White applicants are: Baker, Kelly, McCarthy, Murphy, Murray, O’Brien, Ryan, Sullivan, and Walsh. The last names used for African-American applicants are: Jackson, Jones, Robinson, Washington, and Williams.
Since we allocate the same phone number for applicants with different names, we cannot use a person name in the outgoing message. While we do not expect positive feedback from an employer to take place via postal mail, resumes still need postal addresses. We therefore construct fictitious addresses based on real streets in Boston and Chicago using the White Pages. We select up to three addresses in each 5-digit zip code in Boston and Chicago. Within cities, we randomly assign addresses across all resumes. We also create eight e-mail addresses, four for Chicago and four for Boston. These e-mail addresses are neutral with respect to both race and sex. Not all applicants are given an e-mail address. The e-mail addresses are used almost exclusively for the higher-quality resumes. This procedure leaves us with a bank of names, phone numbers, addresses, and e-mail addresses that we can assign to the template resumes when responding to the employment ads.

C. Responding to Ads

The experiment was carried out between July 2001 and January 2002 in Boston and between July 2001 and May 2002 in Chicago. Over that period, we surveyed all employment ads in the Sunday editions of The Boston Globe and The Chicago Tribune in the sales, administrative support, and clerical and customer services sections. We eliminate any ad where applicants were asked to call or appear in person. In fact, most of the ads we surveyed in these job categories ask for applicants to fax in or (more rarely) mail in their resume. We log the name (when available) and contact information for each employer, along with any information on the position advertised and specific requirements (such as education, experience, or computer skills). We also record whether or not the ad explicitly states that the employer is an equal opportunity employer.

For each ad, we use the bank of resumes to sample four resumes (two high-quality and two low-quality) that fit the job description and requirements as closely as possible. In some cases, we slightly alter the resumes to improve the quality of the match, such as by adding the knowledge of a specific software program.

One of the high- and one of the low-quality resumes selected are then drawn at random to receive African-American names, the other high- and low-quality resumes receive White names. We use male and female names for sales jobs, whereas we use nearly exclusively female names for administrative and clerical jobs to increase callback rates. Based on sex, race, city, and resume quality, we assign a resume the appropriate phone number. We also select at random a postal address. Finally, e-mail addresses are added to most of the high-quality resumes. The final resumes are formatted, with fonts, layout, and cover letter style chosen at random. The resumes are then faxed (or in a few cases mailed) to the employer. All in all, we respond to more than 1,300 employment ads over the entire sample period and send close to 5,000 resumes.

D. Measuring Responses

We measure whether a given resume elicits a callback or e-mail back for an interview. For each phone or e-mail response, we use the content of the message left by the employer (name of the applicant, company name, telephone number for contact) to match the response to the corresponding resume-ad pair. Any attempt by employers to contact applicants via postal mail cannot be measured in our experiment since the addresses are fictitious. Several human resource managers confirmed to us that

21 The e-mail addresses are registered on Yahoo.com, Angelfire.com, or Hotmail.com.
22 This period spans tighter and slacker labor markets. In our data, this is apparent as callback rates (and number of new ads) dropped after September 11, 2001. Interestingly, however, the racial gap we measure is the same across these two periods.
23 In some instances, our resume bank does not have four resumes that are appropriate matches for a given ad. In such instances, we send only two resumes.
24 Though the same names are repeatedly used in our experiment, we guarantee that no given ad receives multiple resumes with the same name.
25 Male names were used for a few administrative jobs in the first month of the experiment.
26 In the first month of the experiment, a few high-quality resumes were sent without e-mail addresses and a few low-quality resumes were given e-mail addresses. See Table 3 for details.
27 Very few employers used e-mail to contact an applicant back.
employers rarely, if ever, contact applicants via postal mail to set up interviews.

E. Weaknesses of the Experiment

We have already highlighted the strengths of this experiment relative to previous audit studies. We now discuss its weaknesses. First, our outcome measure is crude, even relative to the previous audit studies. Ultimately, one cares about whether an applicant gets the job and about the wage offered conditional on getting the job. Our procedure, however, simply measures callbacks for interviews. To the extent that the search process has even moderate frictions, one would expect that reduced interview rates would translate into reduced job offers. However, we are not able to translate our results into gaps in hiring rates or gaps in earnings.

Another weakness is that the resumes do not directly report race but instead suggest race through personal names. This leads to various sources of concern. First, while the names are chosen to make race salient, some employers may simply not notice the names or not recognize their racial content. On a related note, because we are not assigning race but only race-specific names, our results are not representative of the average African-American (who may not have such a racially distinct name). We return to this issue in Section IV, subsection B.

Finally, and this is an issue pervasive in both our study and the pair-matching audit studies, newspaper ads represent only one channel for job search. As is well known from previous work, social networks are another common means through which people find jobs and one that clearly cannot be studied here. This omission could qualitatively affect our results if African-Americans use social networks more or if employers who rely more on networks differentiate less by race.

III. Results

A. Is There a Racial Gap in Callback?

Table 1 tabulates average callback rates by racial soundingness of names. Included in brackets under each rate is the number of resumes sent in that cell. Column 4 also reports the p-value for a test of proportion testing the null hypothesis that the callback rates are equal across racial groups.

<table>
<thead>
<tr>
<th>Sample:</th>
<th>Percent callback for White names</th>
<th>Percent callback for African-American names</th>
<th>Ratio</th>
<th>Percent difference (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sent resumes</td>
<td>9.65</td>
<td>6.45</td>
<td>1.50</td>
<td>3.20 (0.0000)</td>
</tr>
<tr>
<td>[2,435]</td>
<td>[2,435]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>8.06</td>
<td>5.40</td>
<td>1.49</td>
<td>2.66 (0.0057)</td>
</tr>
<tr>
<td>[1,352]</td>
<td>[1,352]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>11.63</td>
<td>7.76</td>
<td>1.50</td>
<td>4.05 (0.0023)</td>
</tr>
<tr>
<td>[1,083]</td>
<td>[1,083]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>9.89</td>
<td>6.63</td>
<td>1.49</td>
<td>3.26 (0.0003)</td>
</tr>
<tr>
<td>[1,860]</td>
<td>[1,886]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females in administrative jobs</td>
<td>10.46</td>
<td>6.55</td>
<td>1.60</td>
<td>3.91 (0.0003)</td>
</tr>
<tr>
<td>[1,358]</td>
<td>[1,359]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females in sales jobs</td>
<td>8.37</td>
<td>6.83</td>
<td>1.22</td>
<td>1.54 (0.3523)</td>
</tr>
<tr>
<td>[502]</td>
<td>[527]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>8.87</td>
<td>5.83</td>
<td>1.52</td>
<td>3.04 (0.0513)</td>
</tr>
<tr>
<td>[575]</td>
<td>[549]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table reports, for the entire sample and different subsamples of sent resumes, the callback rates for applicants with a White-sounding name (column 1) an an African-American-sounding name (column 2), as well as the ratio (column 3) and difference (column 4) of these callback rates. In brackets in each cell is the number of resumes sent in that cell. Column 4 also reports the p-value for a test of proportion testing the null hypothesis that the callback rates are equal across racial groups.

As Appendix Table A1 indicates, the African-American names we use are, however, quite common among African-Americans, making this less of a concern.

In fact, there is some evidence that African-Americans may rely less on social networks for their job search (Harry J. Holzer, 1987).
names have a 9.65 percent chance of receiving a callback. Equivalent resumes with African-American names have a 6.45 percent chance of being called back. This represents a difference in callback rates of 3.20 percentage points, or 50 percent, that can solely be attributed to the name manipulation. Column 4 shows that this difference is statistically significant.\(^{30}\) Put in other words, these results imply that a White applicant should expect on average one callback for every 10 ads she or he applies to; on the other hand, an African-American applicant would need to apply to about 15 different ads to achieve the same result.\(^{31}\)

How large are these effects? While the cost of sending additional resumes might not be large per se, this 50-percent gap could be quite substantial when compared to the rate of arrival of new job openings. In our own study, the biggest constraining factor in sending more resumes was the limited number of new job openings each week. Another way to benchmark the measured return to a White name is to compare it to the returns to other resume characteristics. For example, in Table 5, we will show that, at the average number of years of experience in our sample, an extra year of experience increases the likelihood of a callback by a 0.4 percentage point. Based on this point estimate, the return to a White name is equivalent to about eight additional years of experience.

Rows 2 and 3 break down the full sample of sent resumes into the Boston and Chicago markets. About 20 percent more resumes were sent in Chicago than in Boston. The average callback rate (across races) is lower in Chicago than in Boston. This might reflect differences in labor market conditions across the two cities over the experimental period or maybe differences in the ability of the MIT and Chicago teams of research assistants in selecting resumes that were good matches for a given help-wanted ad. The percentage difference in callback rates is, however, strikingly similar across both cities. White applicants are 49 percent more likely than African-American applicants to receive a callback in Chicago and 50 percent more likely in Boston. These racial differences are statistically significant in both cities.

Finally, rows 4 to 7 break down the full sample into female and male applicants. Row 4 displays the average results for all female names while rows 5 and 6 break the female sample into administrative (row 5) and sales jobs (row 6); row 7 displays the average results for all male names. As noted earlier, female names were used in both sales and administrative job openings whereas male names were used close to exclusively for sales openings.\(^{32}\) Looking across occupations, we find a significant racial gap in callbacks for both males (52 percent) and females (49 percent). Comparing males to females in sales occupations, we find a larger racial gap among males (52 percent versus 22 percent). Interestingly, females in sales jobs appear to receive more callbacks than males; however, this (reverse) gender gap is statistically insignificant and economically much smaller than any of the racial gaps discussed above.

Rather than studying the distribution of callbacks at the applicant level, one can also tabulate the distribution of callbacks at the employment-ad level. In Table 2, we compute the fraction of employers that treat White and African-American applicants equally, the fraction of employers that favor White applicants and the fraction of employers that favor African-American applicants. Because we send up to four resumes in response to each sampled ad, the three categories above can each take three different forms. Equal treatment occurs when either no applicant gets called back, one White and one African-American get called back or two Whites and two African-Americans get called back. Whites are favored when either only one White gets called back, two Whites and no African-American get called back or two Whites and one African-American get called back. African-Americans are favored in all other cases.

As Table 2 indicates, equal treatment occurs for about 88 percent of the help-wanted ads. As expected, the major source of equal treatment comes from the high fraction of ads for which

\(^{30}\) These statistical tests assume independence of callbacks. We have, however, verified that the results stay significant when we assume that the callbacks are correlated either at the employer or first-name level.

\(^{31}\) This obviously assumes that African-American applicants cannot assess a priori which firms are more likely to treat them more or less favorably.

\(^{32}\) Only about 6 percent of all male resumes were sent in response to an administrative job opening.
no callbacks are recorded (83 percent of the ads). Whites are favored by nearly 8.4 percent of the employers, with a majority of these employers contacting exactly one White applicant. African-Americans, on the other hand, are favored by only about 3.5 percent of employers. We formally test whether there is symmetry in the favoring of Whites over African-Americans and African-Americans over Whites. We find that the difference between the fraction of employers favoring Whites and the fraction of employers favoring African-Americans is statistically very significant \((p = 0.0000)\).

B. Do African-Americans Receive Different Returns to Resume Quality?

Our results so far demonstrate a substantial gap in callback based on applicants’ names. Next, we would like to learn more about the factors that may influence this gap. More specifically, we ask how employers respond to improvements in African-American applicants’ credentials. To answer this question, we examine how the racial gap in callback varies by resume quality.

As we explained in Section II, for most of the employment ads we respond to, we send four different resumes: two higher-quality and two lower-quality ones. Table 3 gives a better sense of which factors enter into this subjective classification. Table 3 displays means and standard deviations of the most relevant resume characteristics for the full sample (column 1), as well as broken down by race (columns 2 and 3) and resume quality (columns 4 and 5). Since applicants’ names are randomized, there is no difference in resume characteristics by race. Columns 4 and 5 document the objective differences between resumes subjectively classified as high and low quality. Higher-quality applicants have on average close to an extra year of labor market experience, fewer employment holes (where an employment hole is defined as a period of at least six months without a reported job), are more likely to have worked while at school, and to report some military experience. Also, higher-quality applicants are more likely to have an e-mail address, to have received some honors, and to list some computer skills and other special skills (such as a certification degree or foreign language skills) on their resume. Note that the higher- and lower-quality resumes do not differ on average with regard to
applicants' education level. This reflects the fact that all sent resumes, whether high or low quality, are chosen to be good matches for a given job opening. About 70 percent of the sent resumes report a college degree.33

The last five rows of Table 3 show summary characteristics of the applicants' zip code address. Using 1990 Census data, we compute the fraction of high school dropouts, fraction of college educated or more, fraction of Whites, fraction of African-Americans and log(median per capital income) for each zip code used in the experiment. Since addresses are randomized within cities, these neighborhood quality measures are uncorrelated with race or resume quality.

The differences in callback rates between high- and low-quality resumes are presented in Panel A of Table 4. The first thing to note is that the resume quality manipulation works: higher-quality resumes receive more callbacks. As row 1 indicates, we record a callback rate of close to 11 percent for White applicants with a higher-quality resume, compared to 8.5 percent for White applicants with lower-quality resumes. This is a statistically significant difference of 2.29 percentage points, or 27 percent (p = 0.0057). Most strikingly, African-Americans experience much less of an increase in callback

33 This varies from about 50 percent for the clerical and administrative support positions to more than 80 percent for the executive, managerial, and sales representatives positions.
rate for similar improvements in their credentials. African-Americans with higher-quality resumes receive a callback 6.7 percent of the time, compared to 6.2 percent for African-Americans with lower quality resumes. This is only a 0.51-percentage-point, or 8-percent, difference and this difference is not statistically significant \((p = 0.6084)\).

Instead of relying on the subjective quality classification, Panel B directly uses resume characteristics to classify the resumes. More specifically, we use a random subsample of one-third of the resumes to estimate a probit regression of the callback dummy on the set of resume characteristics as displayed in Table 3. We further control for a sex dummy, a city dummy, six occupation dummies, and a vector of dummy variables for job requirements as listed in the employment ad (see Section III, subsection D, for details). We then use the estimated coefficients on the set of resume characteristics to estimate a predicted callback for the remaining resumes (two-thirds of the sample). We call “high-quality” resumes the resumes that rank above the median predicted callback and “low-quality” resumes the resumes that rank below the median predicted callback. In brackets is the number of resumes sent for each race/quality group. The last column reports the \(p\)-value of a test of proportion testing the null hypothesis that the callback percents are equal across quality groups within each racial group.

Table 4—Average Callback Rates By Racial Soundingness of Names and Resume Quality

<table>
<thead>
<tr>
<th>Panel A: Subjective Measure of Quality (Percent Callback)</th>
<th>Low</th>
<th>High</th>
<th>Ratio</th>
<th>Difference ((p)-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White names</td>
<td>8.50</td>
<td>10.79</td>
<td>1.27</td>
<td>2.29</td>
</tr>
<tr>
<td>[1,212] [1,223]</td>
<td></td>
<td></td>
<td></td>
<td>(0.0557)</td>
</tr>
<tr>
<td>African-American names</td>
<td>6.19</td>
<td>6.70</td>
<td>1.08</td>
<td>0.51</td>
</tr>
<tr>
<td>[1,212] [1,223]</td>
<td></td>
<td></td>
<td></td>
<td>(0.6084)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Predicted Measure of Quality (Percent Callback)</th>
<th>Low</th>
<th>High</th>
<th>Ratio</th>
<th>Difference ((p)-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White names</td>
<td>7.18</td>
<td>13.60</td>
<td>1.89</td>
<td>6.42</td>
</tr>
<tr>
<td>[822] [816]</td>
<td></td>
<td></td>
<td></td>
<td>(0.0000)</td>
</tr>
<tr>
<td>African-American names</td>
<td>5.37</td>
<td>8.60</td>
<td>1.60</td>
<td>3.23</td>
</tr>
<tr>
<td>[819] [814]</td>
<td></td>
<td></td>
<td></td>
<td>(0.0104)</td>
</tr>
</tbody>
</table>

Notes: Panel A reports the mean callback percents for applicant with a White name (row 1) and African-American name (row 2) depending on whether the resume was subjectively qualified as a lower quality or higher quality. In brackets is the number of resumes sent for each race/quality group. The last column reports the \(p\)-value of a test of proportion testing the null hypothesis that the callback rates are equal across quality groups within each racial group. For Panel B, we use a third of the sample to estimate a probit regression of the callback dummy on the set of resume characteristics as displayed in Table 3. We further control for a sex dummy, a city dummy, six occupation dummies, and a vector of dummy variables for job requirements as listed in the employment ad (see Section III, subsection D, for details). We then use the estimated coefficients on the set of resume characteristics to estimate a predicted callback for the remaining resumes (two-thirds of the sample). We call “high-quality” resumes the resumes that rank above the median predicted callback and “low-quality” resumes the resumes that rank below the median predicted callback. In brackets is the number of resumes sent for each race/quality group. The last column reports the \(p\)-value of a test of proportion testing the null hypothesis that the callback percents are equal across quality groups within each racial group.
extra year of experience increases the likelihood of a callback by about a 0.4 percentage point. The most counterintuitive effects come from computer skills, which appear to negatively predict callback, and employment holes, which appear to positively predict callback.

The same qualitative patterns hold in column 2 where we focus on White applicants. More importantly, the estimated returns to an e-mail address, additional work experience, honors, and special skills appear economically stronger for that racial group. For example, at the average number of years of experience in our sample, each extra year of experience increases the likelihood of a callback by about a 0.7 percentage point.

As might have been expected from the two previous columns, we find that the estimated returns on these resume characteristics are all economically and statistically weaker for African-American applicants (column 3). In fact, all the estimated effects for African-Americans are statistically insignificant, except for the return to special skills. Resume characteristics thus appear less predictive of callback rates for African-Americans than they are for Whites. To illustrate this more saliently, we predict callback rates using either regression estimates in column 2 or regression estimates in column 3. The standard deviation of the predicted callback from column 2 is 0.062, whereas it is only 0.037 from column 3. In summary, employers simply seem to pay less attention or discount more the characteristics listed on the

Table 5—Effect of Resume Characteristics on Likelihood of Callback

<table>
<thead>
<tr>
<th>Dependent Variable: Callback Dummy</th>
<th>Sample:</th>
<th>All resumes</th>
<th>White names</th>
<th>African-American names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of experience (*10)</td>
<td>0.07</td>
<td>0.13</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Years of experience^2 (*100)</td>
<td>−0.02</td>
<td>−0.04</td>
<td>−0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Volunteering? (Y = 1)</td>
<td>−0.01</td>
<td>−0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Military experience? (Y = 1)</td>
<td>−0.00</td>
<td>0.02</td>
<td>−0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>E-mail? (Y = 1)</td>
<td>0.02</td>
<td>0.03</td>
<td>−0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Employment holes? (Y = 1)</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Work in school? (Y = 1)</td>
<td>0.01</td>
<td>0.02</td>
<td>−0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Honors? (Y = 1)</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Computer skills? (Y = 1)</td>
<td>−0.02</td>
<td>−0.04</td>
<td>−0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Special skills? (Y = 1)</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td></td>
</tr>
</tbody>
</table>

Ho: Resume characteristics effects are all zero (p-value)

<table>
<thead>
<tr>
<th></th>
<th>54.50</th>
<th>57.59</th>
<th>23.85</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0080)</td>
</tr>
</tbody>
</table>

| Standard deviation of predicted callback | 0.047 | 0.062 | 0.037 |

| Sample size | 4,870 | 2,435 | 2,435 |

Notes: Each column gives the results of a probit regression where the dependent variable is the callback dummy. Reported in the table are estimated marginal changes in probability for the continuous variables and estimated discrete changes for the dummy variables. Also included in each regression are a city dummy, a sex dummy, six occupation dummies, and a vector of dummy variables for job requirements as listed in the employment ad (see Section III, subsection D, for details). Sample in column 1 is the entire set of sent resumes; sample in column 2 is the set of resumes with White names; sample in column 3 is the set of resumes with African-American names. Standard errors are corrected for clustering of the observations at the employment-ad level. Reported in the second to last row are the p-values for a χ² testing that the effects on the resume characteristics are all zero. Reported in the second to last row is the standard deviation of the predicted callback rate.
resumes with African-American-sounding names. Taken at face value, these results suggest that African-Americans may face relatively lower individual incentives to invest in higher skills.36

C. Applicants’ Address

An incidental feature of our experimental design is the random assignment of addresses to the resumes. This allows us to examine whether and how an applicant’s residential address, all else equal, affects the likelihood of a callback. In addition, and most importantly for our purpose, we can also ask whether African-American applicants are helped relatively more by residing in more affluent neighborhoods.

We perform this analysis in Table 6. We start (columns 1, 3, and 5) by discussing the effect of neighborhood of residence across all applicants. Each of these columns reports the results of a probit regression of the callback dummy on a specific zip code characteristic and a city dummy. Standard errors are corrected for clustering of the observations at the employment-ad level. We find a positive and significant effect of neighborhood quality on the likelihood of a callback. Applicants living in Whiter (column 1), more educated (column 3), or higher-income (column 5) neighborhoods have a higher probability of receiving a callback. For example, a 10-percentage-point increase in the fraction of college-educated in zip code of residence increases the likelihood of a callback by a 0.54 percentage point (column 3).

In columns 2, 4, and 6, we further interact the zip code characteristic with a dummy variable for whether the applicant is African-American or not. Each of the probit regressions in these columns also includes an African-American dummy, a city dummy, and an interaction of the city dummy with the African-American dummy. There is no evidence that African-Americans benefit any more than Whites from living in a Whiter, more educated zip code. The estimated interactions between fraction White and fraction college educated with the African-American dummy are economically very small and statistically insignificant. We do find an economically more meaningful effect of zip code median income level on the racial gap in callback; this effect, however, is statistically insignificant.

In summary, while neighborhood quality affects callbacks, African-Americans do not benefit more than Whites from living in better neighborhoods. If ghettos and bad neighborhoods are particularly stigmatizing for African-Americans, one might have expected African-Americans to be helped more by having a “better” address. Our results do not support this hypothesis.

D. Job and Employer Characteristics

Table 7 studies how various job requirements (as listed in the employment ads) and employer characteristics correlate with the racial gap in callback. Each row of Table 7 focuses on a specific job or employer characteristic, with

36 This of course assumes that the changes in job and wage offers associated with higher skills are the same across races, or at least not systematically larger for African-Americans.
summary statistics in column 2. Column 3 shows the results of various probit regressions. Each entry in this column is the marginal effect of the specific characteristic listed in that row on the racial gap in callback. More specifically, each entry is from a separate probit regression of a callback dummy on an African-American dummy, the characteristic listed in that row and the interaction of that characteristic with the African-American dummy. The reported coefficient is that on the interaction term.

We start with job requirements. About 80 percent of the ads state some form of requirement. About 44 percent of the ads require some minimum experience, of which roughly 50 percent simply ask for “some experience,” 24 percent less than two years, and 26 percent at least three years of experience. About 44 percent of

Table 7—Effect of Job Requirement and Employer Characteristics on Racial Differences in Callbacks

<table>
<thead>
<tr>
<th>Job requirement:</th>
<th>Sample mean (standard deviation)</th>
<th>Marginal effect on callbacks for African-American names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any requirement? (Y = 1)</td>
<td>0.79 (0.41)</td>
<td>0.023 (0.015)</td>
</tr>
<tr>
<td>Experience? (Y = 1)</td>
<td>0.44 (0.49)</td>
<td>0.011 (0.013)</td>
</tr>
<tr>
<td>Computer skills? (Y = 1)</td>
<td>0.44 (0.50)</td>
<td>0.000 (0.013)</td>
</tr>
<tr>
<td>Communication skills? (Y = 1)</td>
<td>0.12 (0.33)</td>
<td>−0.000 (0.015)</td>
</tr>
<tr>
<td>Organization skills? (Y = 1)</td>
<td>0.07 (0.26)</td>
<td>0.028 (0.029)</td>
</tr>
<tr>
<td>Education? (Y = 1)</td>
<td>0.11 (0.31)</td>
<td>−0.031 (0.017)</td>
</tr>
<tr>
<td>Total number of requirements</td>
<td>1.18 (0.93)</td>
<td>0.002 (0.006)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employer characteristic:</th>
<th>Sample mean (standard deviation)</th>
<th>Marginal effect on callbacks for African-American names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal opportunity employer? (Y = 1)</td>
<td>0.29 (0.45)</td>
<td>−0.013 (0.012)</td>
</tr>
<tr>
<td>Federal contractor? (Y = 1)</td>
<td>0.11 (0.32)</td>
<td>−0.035 (0.016)</td>
</tr>
<tr>
<td>(N = 3,102)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(employment)</td>
<td>5.74 (1.74)</td>
<td>−0.001 (0.005)</td>
</tr>
<tr>
<td>(N = 1,690)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ownership status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Privately held</td>
<td>0.74</td>
<td>0.011 (0.019)</td>
</tr>
<tr>
<td>(N = 2,878)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publicly traded</td>
<td>0.15</td>
<td>−0.025 (0.015)</td>
</tr>
<tr>
<td>(N = 2,878)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-for-profit</td>
<td>0.11</td>
<td>0.025 (0.042)</td>
</tr>
<tr>
<td>(N = 1,918)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction African-Americans in employer’s zip code</td>
<td>0.08 (0.15)</td>
<td>0.117 (0.062)</td>
</tr>
</tbody>
</table>

Notes: Sample is all sent resumes (N = 4,870) unless otherwise specified in column 1. Column 2 reports means and standard deviations (in parentheses) for the job requirement or employer characteristic. For ads listing an experience requirement, 50.1 percent listed “some,” 24.0 percent listed “two years or less,” and 25.9 percent listed “three years or more.” For ads listing an education requirement, 8.8 percent listed a high school degree, 48.5 percent listed some college, and 42.7 percent listed at least a four-year college degree. Column 3 reports the marginal effect of the job requirement or employer characteristic listed in that row on differential treatment. Specifically, each cell in column 3 corresponds to a different probit regression of the callback dummy on an African-American name dummy, a dummy for the requirement or characteristic listed in that row and the interaction of the requirement or characteristic dummy with the African-American name dummy. Reported in each cell is the estimated change in probability for the interaction term. Standard errors are corrected for clustering of the observations at the employment-ad level.
ads mention some computer knowledge requirement, which can range from Excel or Word to more esoteric software programs. Good communication skills are explicitly required in about 12 percent of the ads. Organization skills are mentioned 7 percent of the time. Finally, only about 11 percent of the ads list an explicit education requirement. Of these, 8.8 percent require a high school degree, 48.5 percent some college (such as an associate degree), and the rest at least a four-year college degree.\(^\text{37}\)

Despite this variability, we find little systematic relationship between any of the requirements and the racial gap in callback. The point estimates in column 3 show no consistent economic pattern and are all statistically weak. Measures of job quality, such as experience or computer skills requirements, do not predict the extent of the racial gap. Communication or other interpersonal skill requirements have no effect on the racial gap either.\(^\text{38}\)

We also study employer characteristics. Collecting such information is a more difficult task since it is not readily available from the employment ads we respond to. The only piece of employer information we can directly collect from the employment ad is whether or not the employer explicitly states being an “Equal Opportunity Employer.” In several cases, the name of the employer is not even mentioned in the ad and the only piece of information we can rely on is the fax number which applications must be submitted to. We therefore have to turn to supplemental data sources. For employment ads that do not list a specific employer, we first use the fax number to try to identify the company name via Web reverse-lookup services. Based on company names, we use three different data sources (OneSource Business Browser, Thomas Register, and Dun and Bradstreet Million Dollar Directory, 2001) to track company information such as total employment, industry, and ownership status. Using this same set of data sources, we also try to identify the specific zip code of the company (or company branch) that resumes are to be sent to. Finally, we use the Federal Procurement and Data Center Web site to find a list of companies that have federal contracts.\(^\text{39}\) The racial difference in callback rates for the subsamples where employer characteristics could be determined is very similar in magnitude to that in the full sample.

Employer characteristics differ significantly across ads. Twenty-nine percent of all employers explicitly state that they are “Equal Opportunity Employers.” Eleven percent are federal contractors and, therefore, might face greater scrutiny under affirmative action laws. The average company size is around 2,000 employees but there is a lot of variation across firms. Finally, 74 percent of the firms are privately held, 15 percent are publicly traded, and 11 percent are not-for-profit organizations.

Neither “Equal Opportunity Employers” nor federal contractors appear to treat African-Americans more favorably. In fact, each of these employer characteristics is associated with a larger racial gap in callback (and this effect is marginally significant for federal contractors). Differential treatment does not vary with employer size.\(^\text{40}\) Point estimates indicate less differential treatment in the not-for-profit sector; however, this effect is very noisily estimated.\(^\text{41}\)

In an unpublished Appendix (available from the authors upon request), we also study how the racial gap in callback varies by occupation and industry. Based on the employment ad listings, we classify the job openings into six occupation categories: executives and managers; administrative supervisors; sales representatives; sales workers; secretaries and legal assistants; clerical workers. We also, when possible,

\(^\text{37}\) Other requirements sometimes mentioned include typing skills for secretaries (with specific words-per-minute minimum thresholds), and, more rarely, foreign language skills.

\(^\text{38}\) Other ways of estimating these effects produce a similar nonsignificant result. Among other things, we considered including a city dummy or estimating the effects separately by city; we also estimated one single probit regression including all requirements at once.

\(^\text{39}\) This Web site (www.fpdc.gov) is accurate up to and including March 21, 2000.

\(^\text{40}\) Similar results hold when we measure employer size using a total sales measure rather than an employment measure.

\(^\text{41}\) Our measurement of the racial gap by firm or employer type may not be a good indicator of the fraction of African-Americans actually employed in these firms. For example, “Equal Opportunity Employers” may receive a higher fraction of African-American resumes. Their actual hiring may therefore look different from that of non “Equal Opportunity Employers” when one considers the full set of resumes they receive.
classify employers into six industry categories: manufacturing; transportation and communication; wholesale and retail trade; finance, insurance, and real estate; business and personal services; health, educational, and social services. We then compute occupation and industry-specific racial gaps in callback and relate these gaps to 1990 Census-based measures of occupation and industry earnings, as well as Census-based measures of the White/African-American wage gap in these occupations and industries.

We find a positive White/African-American gap in callbacks in all occupation and industry categories (except for transportation and communication). While average earnings vary a lot across the occupations covered in the experiment, we find no systematic relationship between occupation earnings and the racial gap in callback. Similarly, the industry-specific gaps in callback do not relate well to a measure of inter-industry wage differentials. In fact, while the racial gap in callback rates varies somewhat across occupations and industries, we cannot reject the null hypothesis that the gap is the same across all these categories.

The last row of Table 7 focuses on the marginal effect of employer location on the racial gap in callback. We use as a measure of employer location the zip code of the company (or company branch) resumes were to be sent to. More specifically, we ask whether differential treatment by race varies with the fraction of African-Americans in the employer’s zip code. We find a marginally significant positive effect of employer location on African-American callbacks but this effect is extremely small. In regressions not reported here (but available from the authors upon request), we reestimate this effect separately by city. While the point estimates are positive for both cities, the effect is only statistically significant for Chicago.

IV. Interpretation

Three main sets of questions arise when interpreting the results above. First, does a higher callback rate for White applicants imply that employers are discriminating against African-Americans? Second, does our design only isolate the effect of race or is the name manipulation conveying some other factors than race? Third, how do our results relate to different models of racial discrimination?

A. Interpreting Callback Rates

Our results indicate that for two identical individuals engaging in an identical job search, the one with an African-American name would receive fewer interviews. Does differential treatment within our experiment imply that employers are discriminating against African-Americans (whether it is rational, prejudice-based, or other form of discrimination)? In other words, could the lower callback rate we record for African-American resumes within our experiment be consistent with a racially neutral review of the entire pool of resumes the surveyed employers receive?

In a racially neutral review process, employers would rank order resumes based on their quality and call back all applicants that are above a certain threshold. Because names are randomized, the White and African-American resumes we send should rank similarly on average. So, irrespective of the skill and racial composition of the applicant pool, a race-blind selection rule would generate equal treatment of Whites and African-Americans. So our results must imply that employers use race as a factor when reviewing resumes, which matches the legal definition of discrimination.

But even rules where employers are not trying to interview as few African-American applicants as possible may generate observed differential treatment in our experiment. One such hiring rule would be employers trying to interview a target level of African-American candidates. For example, perhaps the average firm in our experiment aims to produce an interview pool that matches the population base rate. This rule could produce the observed differential treatment if the average firm receives a higher proportion of African-American resumes than the population base rate because African-Americans disproportionately apply to the jobs and industries in our sample.

42 For previous work on the effect of employer location on labor market discrimination, see, for example, Steven Raphael et al. (2000).

43 Another variant of this argument is that the (up to) two African-American resumes we sent are enough to signifi-
Some of our other findings may be consistent with such a rule. For example, the fact that “Equal Opportunity Employers” or federal contractors do not appear to discriminate any less may reflect the fact that such employers receive more applications from African-Americans. On the other hand, other key findings run counter to this rule. As we discuss above, we find no systematic difference in the racial gap in callback across occupational or industry categories, despite the large variation in the fraction of African-Americans looking for work in those categories. African-Americans are underrepresented in managerial occupations, for example. If employers matched base rates in the population, the few African-Americans who apply to these jobs should receive a higher callback rate than Whites. Yet, we find that the racial gap in managerial occupations is the same as in all the other job categories. This rule also runs counter to our findings on returns to skill. Suppose firms are struggling to find White applicants but overwhelmed with African-American ones. Then they should be less sensitive to the quality of White applicants (as they are trying to fill in their hiring quota for Whites) and much more sensitive to the quality of Black applicants (when they have so many to pick from). Thus, it is unlikely that the differential treatment we observe is generated by hiring rules such as these.

B. Potential Confounds

While the names we have used in this experiment strongly signal racial origin, they may also signal some other personal trait. More specifically, one might be concerned that employers are inferring social background from the personal name. When employers read a name like “Tyrone” or “Latoya,” they may assume that the person comes from a disadvantaged background.44 In the extreme form of this social background interpretation, employers do not care at all about race but are discriminating only against the social background conveyed by the names we have chosen.45

While plausible, we feel that some of our earlier results are hard to reconcile with this interpretation. For example, in Table 6, we found that while employers value “better” addresses, African-Americans are not helped more than Whites by living in Whiter or more educated neighborhoods. If the African-American names we have chosen mainly signal negative social background, one might have expected the estimated name gap to be lower for better addresses. Also, if the names mainly signal social background, one might have expected the name gap to be higher for jobs that rely more on soft skills or require more interpersonal interactions.

We found no such evidence in Table 7. We, however, directly address this alternative interpretation by examining the average social background of babies born with the names used in the experiment. We were able to obtain birth certificate data on mother’s education (less than high school, high school or more) for babies born in Massachusetts between 1970 and

44 Roland Fryer and Steven Levitt (2003) provide a recent analysis of social background and naming conventions amongst African-Americans.

45 African-Americans as a whole come from more disadvantaged backgrounds than Whites. For this social class effect to be something of independent interest, one must assert that African-Americans with the African-American names we have selected are from a lower social background than the average African-American and/or that Whites with the White names we have selected are from a higher social background than the average White. We come back to this point below.
For each first name in our experiment, we compute the fraction of babies with that name and, in that gender-race cell, whose mothers have at least completed a high school degree.

1986. For each first name in our experiment, we compute the fraction of babies with that name and, in that gender-race cell, whose mothers have at least completed a high school degree.

Table 8, displays the average callback rate for each first name along with this proxy for social background. Within each race-gender group, the names are ranked by increasing callback rate. Interestingly, there is significant correlation between callback rate and mother education within each race-gender group as well as the p-value for the test of independence.

Notes: This table reports, for each first name used in the experiment, callback rate and average mother education. Mother education for a given first name is defined as the percent of babies born with that name in Massachusetts between 1970 and 1986 whose mother had at least completed a high school degree (see text for details). Within each sex/race group, first names are ranked by increasing callback rate. “Average” reports, within each race-gender group, the average mother education for all the babies born with one of the names used in the experiment. “Overall” reports, within each race-gender group, average mother education for all babies born in Massachusetts between 1970 and 1986 in that race-gender group. “Correlation” reports the Spearman rank order correlation between callback rate and mother education within each race-gender group as well as the p-value for the test of independence.

This longer time span (compared to that used to assess name frequencies) was imposed on us for confidentiality reasons. When fewer than 10 births with education data available are recorded in a particular education-name cell, the exact number of births in that cell is not reported and we impute five births. Our results are not sensitive to this imputation. One African-American female name (Latonya) and two male names (Rasheed and Hakim) were imputed in this way. One African-American male name (Tremayne) had too few births with available education data and was therefore dropped from this analysis. Our results are qualitatively similar when we use a larger data set of California births for the years 1989 to 2000 (kindly provided to us by Steven Levitt).
variation in callback rates by name. Of course, chance alone could produce such variation because of the rather small number of observations in each cell (about 200 for the female names and 70 for the male names).47

The row labeled “Average” reports the average fraction of mothers that have at least completed high school for the set of names listed in that gender-race group. The row labeled “Overall” reports the average fraction of mothers that have at least completed high school for the full sample of births in that gender-race group. For example, 83.9 percent of White female babies born between 1970 and 1986 have mothers with at least a high school degree; 91.7 percent of the White female babies with one of the names used in the experiment have mothers with at least a high school degree.

Consistent with a social background interpretation, the African-American names we have chosen fall below the African-American average. For African-American male names, however, the gap between the experimental names and the population average is negligible. For White names, both the male and female names are above the population average.

But, more interestingly to us, there is substantial between-name heterogeneity in social background. African-American babies named Kenya or Jamal are affiliated with much higher mothers’ education than African-American babies named Latonya or Leroy. Conversely, White babies named Carrie or Neil have lower social background than those named Emily or Geoffrey. This allows for a direct test of the social background hypothesis within our sample: are names associated with a worse social background discriminated against more? In the last row in each gender-race group, we report the rank-order correlation between callback rates and mother’s education. The social background hypothesis predicts a positive correlation. Yet, for all four categories, we find the exact opposite. The p-values indicate that we cannot reject independence at standard significance levels except in the case of African-American males where we can almost reject it at the 10-percent level (p = 0.120). In summary, this test suggests little evidence that social background drives the measured race gap.

Names might also influence our results through familiarity. One could argue that the African-American names used in the experiment simply appear odd to human resource managers and that any odd name is discriminated against. But as noted earlier, the names we have selected are not particularly uncommon among African-Americans (see Appendix Table A1). We have also performed a similar exercise to that of Table 8 and measured the rank-order correlation between name-specific callback rates and name frequency within each gender-race group. We found no systematic positive correlation.

There is one final potential confound to our results. Perhaps what appears as a bias against African-Americans is actually the result of reverse discrimination. If qualified African-Americans are thought to be in high demand, then employers with average quality jobs might feel that an equally talented African-American would never accept an offer from them and thereby never call her or him in for an interview. Such an argument might also explain why African-Americans do not receive as strong a return as Whites to better resumes, since higher qualification only strengthens this argument. But this interpretation would suggest that the better jobs, we ought to see evidence of reverse discrimination, or at least a smaller racial gap. However, as we discussed in Section III, subsection D, we do not find any such evidence. The racial gap does not vary across jobs with different skill requirements, nor does it vary across occupation categories. Even among the better jobs in our sample, we find that employers significantly favor applicants with White names.48

47 We formally tested whether this variation was significant by estimating a probit regression of the callback dummy on all the personal first names, allowing for clustering of the observations at the employment-ad level. For all but African-American females, we cannot reject the null hypothesis that all the first name effects in the same race-gender group are the same. Of course, a lack of a rejection does not mean there is no underlying pattern in the between-name variation in callbacks that might have been detectable with larger sample sizes.

48 One might argue that employers who reverse-discriminate hire through less formal channels than help-wanted ads. But this would imply that African-Americans are less likely to find jobs through formal channels. The evidence on exit out of unemployment does not paint a clear picture in this direction (Holzer, 1987).
C. Relation to Existing Theories

What do these results imply for existing models of discrimination? Economic theories of discrimination can be classified into two main categories: taste-based and statistical discrimination models. Both sets of models can obviously “explain” our average racial gap in callbacks. But can these models explain our other findings? More specifically, we discuss the relevance of these models with a focus on two of the facts that have been uncovered in this paper: (i) the lower returns to credentials for African-Americans; (ii) the relative uniformity of the race gap across occupations, job requirements and, to a lesser extent, employer characteristics and industries.

Taste-based models (Gary S. Becker, 1961) differ in whose prejudiced “tastes” they emphasize: customers, coworkers, or employers. Customer and co-worker discrimination models seem at odds with the lack of significant variation of the racial gap by occupation and industry categories, as the amount of customer contact and the fraction of White employees vary quite a lot across these categories. We do not find a larger racial gap among jobs that explicitly require “communication skills” and jobs for which we expect either customer or co-worker contacts to be higher (retail sales for example).

Because we do not know what drives employer tastes, employer discrimination models could be consistent with the lack of occupation and industry variation. Employer discrimination also matches the finding that employers located in more African-American neighborhoods appear to discriminate somewhat less. However, employer discrimination models would struggle to explain why African-Americans get relatively lower returns to observable skills because employers place less weight on these skills. However, how reasonable is this interpretation for our experiment? First, it is important to note that we are using the same set of resume characteristics for both racial groups. So the lower precision of information for African-Americans cannot be that, for example, an employer does not know what a high school degree from a very African-American neighborhood means (as in Aigner and Cain, 1977). Second, many of the credentials on the resumes are in fact externally and easily verifiable, such as a certification for a specific software.

An alternative version of these models would rely on bias in the observable signal rather than differential variance or noise of these signals by race. Perhaps the skills of African-Americans are discounted because affirmative action makes it easier for African-Americans to get these skills. While this is plausible for credentials such as an employee-of-the-month honor, it is unclear why this would apply to more verifiable and harder skills. It is equally unclear why work experience would be less rewarded since our study suggests that getting a job is more, not less, difficult for African-Americans.

The uniformity of the racial gap across occupations is also troubling for a statistical discrimination interpretation. Numerous factors that should affect the level of statistical discrimination, such as the importance of unobservable skills, the observability of qualifications, the precision of observable skills and the ease of

49 Darity and Mason (1998) provide a more thorough review of a variety of economic theories of discrimination.

50 One could, however, assume that employer tastes differ not just by race but also by race and skill, so that employers have greater prejudice against minority workers with better credentials. But the opposite preferences, employers having a particular distaste for low-skilled African-Americans, also seem reasonable.

in the economics literature. In one class of statistical discrimination models, employers use (observable) race to proxy for unobservable skills (e.g., Edmund S. Phelps, 1972; Kenneth J. Arrow, 1973). This class of models struggle to explain the credentials effect as well. Indeed, the added credentials should lead to a larger update for African-Americans and hence greater returns to skills for that group.

A second class of statistical discrimination models “emphasize the precision of the information that employers have about individual productivity” (Altonji and Blank, 1999). Specifically, in these models, employers believe that the same observable signal is more precise for Whites than for African-Americans (Dennis J. Aigner and Glenn G. Cain, 1977; Shelly J. Lundberg and Richard Startz, 1983; Bradford Cornell and Ivo Welch, 1996). Under such models, African-Americans receive lower returns to observable skills because employers place less weight on these skills. However, how reasonable is this interpretation for our experiment? First, it is important to note that we are using the same set of resume characteristics for both racial groups. So the lower precision of information for African-Americans cannot be that, for example, an employer does not know what a high school degree from a very African-American neighborhood means (as in Aigner and Cain, 1977). Second, many of the credentials on the resumes are in fact externally and easily verifiable, such as a certification for a specific software.

An alternative version of these models would rely on bias in the observable signal rather than differential variance or noise of these signals by race. Perhaps the skills of African-Americans are discounted because affirmative action makes it easier for African-Americans to get these skills. While this is plausible for credentials such as an employee-of-the-month honor, it is unclear why this would apply to more verifiable and harder skills. It is equally unclear why work experience would be less rewarded since our study suggests that getting a job is more, not less, difficult for African-Americans.

The uniformity of the racial gap across occupations is also troubling for a statistical discrimination interpretation. Numerous factors that should affect the level of statistical discrimination, such as the importance of unobservable skills, the observability of qualifications, the precision of observable skills and the ease of
performance measurement, may vary quite a lot across occupations.

This discussion suggests that perhaps other models may do a better job at explaining our findings. One simple alternative model is lexicographic search by employers. Employers receive so many resumes that they may use quick heuristics in reading these resumes. One such heuristic could be to simply read no further when they see an African-American name. Thus they may never see the skills of African-American candidates and this could explain why these skills are not rewarded. This might also to some extent explain the uniformity of the race gap since the screening process (i.e., looking through a large set of resumes) may be quite similar across the variety of jobs we study.51

V. Conclusion

This paper suggests that African-Americans face differential treatment when searching for jobs and this may still be a factor in why they do poorly in the labor market. Job applicants with African-American names get far fewer callbacks for each resume they send out. Equally importantly, applicants with African-American names find it hard to overcome this hurdle in callbacks by improving their observable skills or credentials.

Taken at face value, our results on differential returns to skill have possibly important policy implications. They suggest that training programs alone may not be enough to alleviate the racial gap in labor market outcomes. For training to work, some general-equilibrium force outside the context of our experiment would have to be at play. In fact, if African-Americans recognize how employers reward their skills, they may rationally be less willing than Whites to even participate in these programs.

51 Another explanation could be based on employer stereotyping or categorizing. If employers have coarser stereotypes for African-Americans, many of our results would follow. See Melinda Jones (2002) for the relevant psychology and Mullainathan (2003) for a formalization of the categorization concept.
Table A1—First Names Used in Experiment

<table>
<thead>
<tr>
<th>White female Name</th>
<th>L(W)/L(B)</th>
<th>Perception White</th>
<th>African-American female Name</th>
<th>L(B)/L(W)</th>
<th>Perception Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allison</td>
<td>∞</td>
<td>0.926</td>
<td>Aisha</td>
<td>209</td>
<td>0.97</td>
</tr>
<tr>
<td>Anne</td>
<td>∞</td>
<td>0.962</td>
<td>Ebony</td>
<td>∞</td>
<td>0.9</td>
</tr>
<tr>
<td>Carrie</td>
<td>∞</td>
<td>0.923</td>
<td>Keisha</td>
<td>116</td>
<td>0.93</td>
</tr>
<tr>
<td>Emily</td>
<td>∞</td>
<td>0.925</td>
<td>Kenya</td>
<td>∞</td>
<td>0.967</td>
</tr>
<tr>
<td>Jill</td>
<td>∞</td>
<td>0.889</td>
<td>Lakisha</td>
<td>∞</td>
<td>0.967</td>
</tr>
<tr>
<td>Laurie</td>
<td>∞</td>
<td>0.963</td>
<td>Latonya</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>Kristen</td>
<td>∞</td>
<td>0.963</td>
<td>Latoya</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>Meredith</td>
<td>∞</td>
<td>0.926</td>
<td>Tamika</td>
<td>284</td>
<td>1</td>
</tr>
<tr>
<td>Sarah</td>
<td>∞</td>
<td>0.852</td>
<td>Tanisha</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>

| Fraction of all births: | 3.8 percent | 7.1 percent |

<table>
<thead>
<tr>
<th>White male Name</th>
<th>L(W)/L(B)</th>
<th>Perception White</th>
<th>African-American male Name</th>
<th>L(B)/L(W)</th>
<th>Perception Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brad</td>
<td>∞</td>
<td>1</td>
<td>Darnell</td>
<td>∞</td>
<td>0.967</td>
</tr>
<tr>
<td>Brendan</td>
<td>∞</td>
<td>0.667</td>
<td>Hakim</td>
<td>∞</td>
<td>0.933</td>
</tr>
<tr>
<td>Geoffrey</td>
<td>∞</td>
<td>0.731</td>
<td>Jamal</td>
<td>257</td>
<td>0.967</td>
</tr>
<tr>
<td>Greg</td>
<td>∞</td>
<td>1</td>
<td>Jermaine</td>
<td>90.5</td>
<td>1</td>
</tr>
<tr>
<td>Brett</td>
<td>∞</td>
<td>0.923</td>
<td>Kareem</td>
<td>∞</td>
<td>0.967</td>
</tr>
<tr>
<td>Jay</td>
<td>∞</td>
<td>0.926</td>
<td>Leroy</td>
<td>44.5</td>
<td>0.933</td>
</tr>
<tr>
<td>Matthew</td>
<td>∞</td>
<td>0.888</td>
<td>Rasheed</td>
<td>∞</td>
<td>0.931</td>
</tr>
<tr>
<td>Neil</td>
<td>∞</td>
<td>0.654</td>
<td>Tremayne</td>
<td>∞</td>
<td>0.897</td>
</tr>
<tr>
<td>Todd</td>
<td>∞</td>
<td>0.926</td>
<td>Tyrone</td>
<td>62.5</td>
<td>0.900</td>
</tr>
</tbody>
</table>

| Fraction of all births: | 1.7 percent | 3.1 percent |

Notes: This table tabulates the different first names used in the experiment and their identifiability. The first column reports the likelihood that a baby born with that name (in Massachusetts between 1974 and 1979) is White (or African-American) relative to the likelihood that it is African-American (White). The second column reports the probability that the name was picked as White (or African-American) in an independent field survey of people. The last row for each group of names shows the proportion of all births in that race group that these names account for.

REFERENCES

This article has been cited by:

1. Jeffrey Olivet, Marc Dones, Molly Richard. The Intersection of Homelessness, Racism, and Mental Illness 55-69. [Crossref]
2. Giovanni Busetta, Maria Gabriella Campolo, Demetrio Panarello. 2018. Immigrants and Italian labor market: statistical or taste-based discrimination?. Genus 74:1. . [Crossref]
5. Cynthia Daniels, Christin L. Munsch. 2018. Pregnancy Criminalization, Reproductive Asymmetry, and Race: An Experimental Study. Feminist Criminology 13:5, 560-582. [Crossref]
6. Eva Derous, Ann Marie Ryan. 2018. When your resume is (not) turning you down: Modelling ethnic bias in resume screening. Human Resource Management Journal 72. . [Crossref]
10. David Schwegman. 2018. Rental Market Discrimination Against Same-Sex Couples: Evidence From a Pairwise-Matched Email Correspondence Test. Housing Policy Debate 75, 1-23. [Crossref]
13. Daniel Ian Rubin. 2018. From the Beginning: Creating a Diversity and Multicultural Education Course at Jacksonville State University. Education and Urban Society 50:8, 727-746. [Crossref]
14. RYAN D. ENOS, NOAM GIDRON. 2018. Exclusion and Cooperation in Diverse Societies: Experimental Evidence from Israel. American Political Science Review 112:04, 742-757. [Crossref]
20. Peter Leasure. 2018. Misdemeanor Records and Employment Outcomes: An Experimental Study. Crime & Delinquency 5, 00112871880668. [Crossref]
21. Meraiah Foley, Sue Williamson. 2018. Does anonymising job applications reduce gender bias?. *Gender in Management: An International Journal* 91. [Crossref]

22. Maria R. Ibanez, Bradley R. Staats. Behavioral Empirics and Field Experiments 121-147. [Crossref]

23. Rediet Abebe, Kira Goldner. 2018. Mechanism design for social good. *AI Matters* 4:3, 27-34. [Crossref]

27. Min Hee Go. 2018. Does Christopher Chen vote more than Shu-Wei Chen? The cost of ethnic retention among Asian American voters. *Politics, Groups, and Identities* 6:4, 553-575. [Crossref]

32. Rickard Carlsson, Jens Agerström, Donald Williams, Gary N. Burns. 2018. A Primer on the benefits of differential treatment analysis when predicting discriminatory behavior. *The Quantitative Methods for Psychology* 14:3, 193-205. [Crossref]

36. Jennifer Young-Jin Kim, Duoc Nguyen, Caryn Block. The 360-Degree Experience of Workplace Microaggressions: Who Commits Them? How Do Individuals Respond? What Are the Consequences? 157-177. [Crossref]

40. Sanford C. Goldberg. 2018. What we owe each other, epistemologically speaking: ethico-political values in social epistemology. *Synthese* 26. [Crossref]

44. Rafael Piñeiro Rodriguez, Cecilia Rossel. 2018. A field experiment on bureaucratic discretionary bias under FOI laws. *Government Information Quarterly* 35:3, 418-427. [Crossref]

49. Garret Christensen, Edward Miguel. 2018. Transparency, Reproducibility, and the Credibility of Economics Research. *Journal of Economic Literature* 56:3, 920-980. [Abstract] [View PDF article] [PDF with links]

64. Zelda G. Knight. 2018. ‘Speaking the Names’ of Family as ‘Speaking a Place’. *British Journal of Psychotherapy* **34**:3, 428–442. [Crossref]

84. Zanita E. Fenton. Being Exceptional 79-106. [Crossref]

85. . Prelims i-viii. [Crossref]

86. Fabiana Silva. 2018. The Strength of Whites’ Ties: How employers reward the referrals of black and white jobseekers. *Social Forces* **96**. . [Crossref]

89. David S Pedulla. 2018. How Race and Unemployment Shape Labor Market Opportunities: Additive, Amplified, or Muted Effects?. *Social Forces* **96**:4, 1477-1506. [Crossref]

97. Ross Kleinstuber. 2018. Erasing race: overlooking racial and ethnic disadvantage as a mitigating factor in capital penalty trials. *Journal of Crime and Justice* **41**:3, 244–258. [Crossref]

99. Sabine Otten, Juliette Schaafsma, Wiebren S. Jansen. Inclusion as a Pathway to Peace 35–52. [Crossref]

100. Douglas S. McNair. Preventing Disparities: Bayesian and Frequentist Methods for Assessing Fairness in Machine-Learning Decision-Support Models . [Crossref]

105. Xian Zhao, Monica Biernat. 2018. “I Have Two Names, Xian and Alex”: Psychological Correlates of Adopting Anglo Names. *Journal of Cross-Cultural Psychology* **49**:4, 587–601. [Crossref]

113. Jeanette Morehouse Mendez, Jesse Perez Mendez. 2018. What’s in a Name...or a Face? Student Perceptions of Faculty Race. *Journal of Political Science Education* **14**:2, 177-196. [Crossref]

120. Natasha Quadlin. 2018. The Mark of a Woman’s Record: Gender and Academic Performance in Hiring. *American Sociological Review* **83**:2, 331-360. [Crossref]

121. Jeffrey W. Lucas, Jo C. Phelan. 2018. Influence and Social Distance Consequences across Categories of Race and Mental Illness. *Society and Mental Health* **31**, 215686931876112. [Crossref]

133. Stijn Baert. 2018. Facebook profile picture appearance affects recruiters’ first hiring decisions. *New Media & Society* **20**:3, 1220-1239. [Crossref]

134. B. Keith Payne, Heidi A. Vuletich. 2018. Policy Insights From Advances in Implicit Bias Research. *Policy Insights from the Behavioral and Brain Sciences* **5**:1, 49-56. [Crossref]

139. Kezia R. Manlove, Rebecca M. Belou. 2018. Authors and editors assort on gender and geography in high-rank ecological publications. *PLOS ONE* **13**:2, e0192481. [Crossref]

149. Gunn Elisabeth Birkelund, Tāk Wing Chan, Elisabeth Ugreninov, Arnfinn H. Midtbøen, Jon Rogstad. 2018. Do terrorist attacks affect ethnic discrimination in the labour market? Evidence from two randomized field experiments. *The British Journal of Sociology* **5**. . [Crossref]

151. Simone T.A. Phipps, Leon C. Prieto. 2018. The business of black beauty: social entrepreneurship or social injustice?. *Journal of Management History* **24**:1, 37-56. [Crossref]

158. Henry F. Fradella. Supporting Strategies for Equity, Diversity, and Inclusion in Higher Education Faculty Hiring 119-151. [Crossref]

159. Paul R. Croll. Economic Inequality and Race: No, It Can’t Be that Bad... 213-220. [Crossref]

160. S. Michael Gaddis. An Introduction to Audit Studies in the Social Sciences 3-44. [Crossref]

161. Stijn Baert. Hiring Discrimination: An Overview of (Almost) All Correspondence Experiments Since 2005 63-77. [Crossref]

162. Joanna Lahey, Ryan Beasley. Technical Aspects of Correspondence Studies 81-101. [Crossref]

163. Charles Crabtree. An Introduction to Conducting Email Audit Studies 103-117. [Crossref]

164. Mike Vuolo, Christopher Uggen, Sarah Lageson. To Match or Not to Match? Statistical and Substantive Considerations in Audit Design and Analysis 119-140. [Crossref]

165. William Carbonaro, Jonathan Schwarz. Opportunities and Challenges in Designing and Conducting a Labor Market Resume Study 143-158. [Crossref]

166. Max Besbris, Jacob William Faber, Peter Rich, Patrick Sharkey. The Geography of Stigma: Experimental Methods to Identify the Penalty of Place 159-177. [Crossref]

167. David S. Pedulla. Emerging Frontiers in Audit Study Research: Mechanisms, Variation, and Representativeness 179-195. [Crossref]

168. Zandria F. Robinson. Intersectionality and Gender Theory 69-80. [Crossref]

169. Mikayla Novak. Social Exclusion 153-180. [Crossref]

170. Ethne Knappitsch, Sabine Caliskan. Das Management von unbewussten Vorurteilen im HRM: Rekrutierung und Bindung einer diversen Belegschaft 207-230. [Crossref]

175. John J. Donohue. Anti-Discrimination Law 338-347. [Crossref]

177. Sherrilyn Roush. 2018. Knowledge of Our Own Beliefs. *Philosophy and Phenomenological Research* 96:1, 45-69. [Crossref]

182. Dean Rockwell. Inequality in Organizations 3235-3240. [Crossref]

183. Thomas Hinz. Methoden der Arbeitsmarktforschung 479-524. [Crossref]

184. Derek D. Rucker, Adam D. Galinsky, Joe C. Magee. The Agentic–Communal Model of Advantage and Disadvantage: How Inequality Produces Similarities in the Psychology of Power, Social Class, Gender, and Race 71-125. [Crossref]

185. Kelly Monahan. Connecting 157-178. [Crossref]

186. Matthew Oware. Coming Straight from the Underground 115-152. [Crossref]

188. Alan Mallach. Jobs and Education: The Struggle to Escape the Poverty Trap 203-233. [Crossref]

190. Claire E. Kunesh, Amity Noltemeyer. 2017. Understanding Disciplinary Disproportionality. *Urban Education* 7, 004208591562333. [Crossref]

201. Arjumand Siddiqi, Faraz Vahid Shahidi, Chantel Ramraj, David R. Williams. 2017. Associations between race, discrimination and risk for chronic disease in a population-based sample from Canada. *Social Science & Medicine* 194, 135-141. [Crossref]

202. Mike Dacey. 2017. Anthropomorphism as Cognitive Bias. *Philosophy of Science* 84:5, 1152-1164. [Crossref]

205. Elizabeth Linos, Joanne Reinhard, Simon Ruda. 2017. Levelling the playing field in police recruitment: Evidence from a field experiment on test performance. *Public Administration* 95:4, 943-956. [Crossref]

209. Chloë FitzGerald, Samia Hurst. 2017. Implicit bias in healthcare professionals: a systematic review. *BMC Medical Ethics* 18:1. [Crossref]

211. Rune V. Lesner. 2017. Testing for Statistical Discrimination Based on Gender. *LABOUR* 113. [Crossref]

216. Caprice C. Greenberg. 2017. Association for Academic Surgery presidential address: sticky floors and glass ceilings. *Journal of Surgical Research* 219, ix-xviii. [Crossref]

217. Monica Solinas-Saunders, Melissa J. Stacer. 2017. Fighting labor market discrimination with ban the box (BTB): Are there racial implications?. *Sociology Compass* 11:11, e12535. [Crossref]

225. Lincoln Quillian, Devah Pager, Ole Haxel, Arnfinn H. Midtbøen. 2017. Meta-analysis of field experiments shows no change in racial discrimination in hiring over time. *Proceedings of the National Academy of Sciences* 114:41, 10870-10875. [Crossref]

231. Andrew Hanson. 2017. Do college admissions counselors discriminate? Evidence from a correspondence-based field experiment. *Economics of Education Review* 60, 86-96. [Crossref]

232. Elena Claudia Meroni, Esperanza Vera-Toscano. 2017. The persistence of overeducation among recent graduates. *Labour Economics* 48, 120-143. [Crossref]

238. Stefan Eriksson, Per Johansson, Sophie Langenskiöld. 2017. What is the right profile for getting a job? A stated choice experiment of the recruitment process. *Empirical Economics* 53:2, 803-826. [Crossref]

239. Patrick S. Forscher, Chelsea Mitamura, Emily L. Dix, William T.L. Cox, Patricia G. Devine. 2017. Breaking the prejudice habit: Mechanisms, timecourse, and longevity. *Journal of Experimental Social Psychology* 72, 133-146. [Crossref]

241. , , . 2017. Does Religious Involvement Mitigate the Effects of Major Discrimination on the Mental Health of African Americans? Findings from the Nashville Stress and Health Study. *Religions* 8:9, 195. [Crossref]

244. Magnus Carlsson, Stefan Eriksson. 2017. Do attitudes expressed in surveys predict ethnic discrimination?. *Ethnic and Racial Studies* 40:10, 1739-1757. [Crossref]

245. Dafeng Xu. 2017. Acculturational homophily. *Economics of Education Review* 59, 29-42. [Crossref]

246. Michael Zürn, Sascha Topolinski. 2017. When trust comes easy: Articulatory fluency increases transfers in the trust game. *Journal of Economic Psychology* 61, 74-86. [Crossref]

247. Siyu Yu, Yu Xie. 2017. Preference effects on friendship choice: Evidence from an online field experiment. *Social Science Research* 66, 201-210. [Crossref]

248. Sharon Clemons Doerer, Murray Webster, Lisa Slattery Walker. 2017. Racial double standards and applicant selection. *Social Science Research* 66, 32-41. [Crossref]

251. Nabil Khattab, Shereen Hussein. 2017. Can religious affiliation explain the disadvantage of Muslim women in the British labour market?. *Work, employment and society* 32, 095001701771109. [Crossref]

252. I. M. Nick. 2017. Names, Grades, and Metamorphosis: A Small-Scale Socio-onomastic Investigation into the Effects of Ethnicity and Gender-Marked Personal Names on the Pedagogical Assessments of a Grade School Essay. *Names* 65:3, 129-142. [Crossref]

259. Gary A. Williams, AnaMarie C. Guichard, JungHa An. 2017. The effects of name and religious priming on ratings of a well-known political figure, President Barack Obama. *PLOS ONE* **12**:6, e0180676. [Crossref]

260. Mike Vuolo, Christopher Uggen, Sarah Lageson. Race, Recession, and Social Closure in the Low-Wage Labor Market: Experimental and Observational Evidence 141-183. [Crossref]

262. Patricia Knezek. 2017. Implicit bias in astronomy. *Nature Astronomy* **1**:6, 0151. [Crossref]

265. Eva DEUCHERT, Lukas KAUER. 2017. Subsidios a la contratación de personas con discapacidades. Resultados de un pequeño experimento de campo. *Revista Internacional del Trabajo* **136**:2, 277-293. [Crossref]

269. Gennifer Furst. Prisons, Race Making, and the Changing American Racial Milieu 175-196. [Crossref]

270. Christopher Lewis. 2017. INEQUALITY, INCENTIVES, CRIMINALITY, AND BLAME. *Legal Theory* **3**, 1-28. [Crossref]

274. Xian Zhao, Monica Biernat. 2017. “Welcome to the U.S.” but “change your name”? Adopting Anglo names and discrimination. *Journal of Experimental Social Psychology* **70**, 59-68. [Crossref]

278. Nicolas Guéguen. 2017. “Mr de Bussy” is More Employable than “Mr Bussy”: The Impact of a Particle Associated with the Surname of an Applicant in a Job Application Evaluation Context. Names 65:2, 104–111. [Crossref]

281. Shane Thompson. 2017. COLLEGE ADVISING AND GENDER. Economic Inquiry 55:2, 1007–1016. [Crossref]

282. SHAI BERNSTEIN, ARTHUR KORTEWEG, KEVIN LAWS. 2017. Attracting Early-Stage Investors: Evidence from a Randomized Field Experiment. The Journal of Finance 72:2, 509–538. [Crossref]

293. Charles Lassiter, Nathan Ballantyne. 2017. Implicit racial bias and epistemic pessimism. Philosophical Psychology 30:1–2, 79–101. [Crossref]

297. Rachel Elizabeth Fish. 2017. The racialized construction of exceptionality: Experimental evidence of race/ethnicity effects on teachers' interventions. *Social Science Research* 62, 317-334. [Crossref]

299. Meghan R. Busse, Ayelet Israeli, Florian Zettelmeyer. 2017. Repairing the Damage: The Effect of Price Knowledge and Gender on Auto Repair Price Quotes. *Journal of Marketing Research* 54:1, 75-95. [Crossref]

300. Hema Yoganarasimhan. 2017. Identifying the Presence and Cause of Fashion Cycles in Data. *Journal of Marketing Research* 54:1, 5-26. [Crossref]

306. Loriann Roberson, Filomena Buonocore, Shana M. Yearwood. Hiring for Diversity: The Challenges Faced by American and European Companies in Employee Selection 151-171. [Crossref]

307. Robert Leeson. 44: Europe, 1962–1992 (2) 349-387. [Crossref]

308. Kazuhiro Ueda. Cognitive Mechanism in Selecting New Products: A Cognitive Neuroscience Perspective 31-41. [Crossref]

309. Łukasz Kurek. Supervenience and the Normativity of Folk Psychology in the Legal-Philosophical Context 161-175. [Crossref]

310. M. Bertrand, E. Duflo. Field Experiments on Discrimination a aLaura Stilwell and Jan Zilinsky provided excellent research assistance. We thank Abhijit Banerjee for comments. We are particularly grateful to Betsy Levy Paluck, our discussant, for her detailed and thoughtful review of an earlier draft 309-393. [Crossref]

311. O. Al-Ubaydli, J.A. List. Field Experiments in Markets 271-307. [Crossref]

312. J. Rothstein, T. von Wachter. Social Experiments in the Labor Market 555-637. [Crossref]

313. Naa Oyo A. Kwate. 2017. THE RACE AGAINST TIME. *Du Bois Review: Social Science Research on Race* 14:02, 497-514. [Crossref]

316. Monika Sengul-Jones. ‘Being a Better #Freelancer’: Gendered and Racialised Aesthetic Labour on Online Freelance Marketplaces 215-229. [Crossref]

325. Roy Chen, Yan Chen, Yang Liu, Qiaozhu Mei. 2017. Does team competition increase pro-social lending? Evidence from online microfinance. *Games and Economic Behavior* 101, 311–333. [Crossref]

327. Oliver P. Hauser, Elizabeth Linos, Todd Rogers. 2017. Innovation with field experiments: Studying organizational behaviors in actual organizations. *Research in Organizational Behavior* 37, 185–198. [Crossref]

332. Stijn Baert, Sarah De Visschere, Koen Schoors, Désirée Vandenbergh, Eddy Oney. 2016. First depressed, then discriminated against?: *Social Science & Medicine* 170, 247–254. [Crossref]

334. STEVEN ONGENA, ALEXANDER POPOV. 2016. Gender Bias and Credit Access. *Journal of Money, Credit and Banking* 48:8, 1691–1724. [Crossref]

337. Courtney M. Heldreth, Christine M. Guardino, Lauren H. Wong, Christine Dunkel Schetter, Jenessa R. Shapiro, Peter Schafer, Madeleine Shalowitz, Robin Gaines Lanzi, John Thorp, Tonse Raju. 2016. Childhood Racism Experiences and Postpartum Depressive Symptoms in African American Mothers. *Journal of Social and Clinical Psychology* 35:10, 840-864. [Crossref]

338. Daphne Brandenburg. 2016. Implicit attitudes and the social capacity for free will. *Philosophical Psychology* 29:8, 1215-1228. [Crossref]

343. Thorsten Chmura, Sebastian J. Goerg, Pia Weiss. 2016. Natural groups and economic characteristics as driving forces of wage discrimination. *European Economic Review* 90, 178-200. [Crossref]

346. Ajay Agrawal, Nicola Lacetera, Elizabeth Lyons. 2016. Does standardized information in online markets disproportionately benefit job applicants from less developed countries?. *Journal of International Economics* 103, 1-12. [Crossref]

348. Isaac Wiegman, Ron Mallon. Applied Philosophy of Social Science 439-454. [Crossref]

353. Tomomi Tanaka, Colin F. Camerer. 2016. Trait perceptions influence economic out-group bias: lab and field evidence from Vietnam. Experimental Economics 19:3, 513-534. [Crossref]

355. Stijn Baert, Sunčica Vujić. 2016. Immigrant volunteering: A way out of labour market discrimination?. Economics Letters 146, 95-98. [Crossref]

356. Kristyn L. Karl, Timothy J. Ryan. 2016. When are Stereotypes about Black Candidates Applied? An Experimental Test. The Journal of Race, Ethnicity, and Politics 1:02, 253-279. [Crossref]

358. Crystal L. Hoyt, Stefanie Simon. 2016. The role of social dominance orientation and patriotism in the evaluation of racial minority and female leaders. Journal of Applied Social Psychology 46:9, 518-528. [Crossref]

361. Štěpán Jurajda, Daniel Münich. 2016. Alphabetical order effects in school admissions. Research Papers in Education 31:4, 483-498. [Crossref]

369. Brenda L. Berkelaar, Jeffrey L. Birdsell, Joshua M. Scacco. 2016. Storying the digital professional: how online screening shifts the primary site and authorship of workers’ career stories. Journal of Applied Communication Research 44:3, 275-295. [Crossref]

377. Alessandro Acquisti, Curtis Taylor, Liad Wagman. 2016. The Economics of Privacy. *Journal of Economic Literature* 54:2, 442-492. [Abstract] [View PDF article] [PDF with links]

380. Per LUNDBORG, Per SKEDINGER. 2016. Employer attitudes towards refugee immigrants: Findings from a Swedish survey. *International Labour Review* 155:2, 315-337. [Crossref]

381. Per LUNDBORG, Per SKEDINGER. 2016. L’attitude des employeurs à l’égard des réfugiés: les résultats d’une enquête suédoise. *Revue internationale du Travail* 155:2, 347-371. [Crossref]

382. Per LUNDBORG, Per SKEDINGER. 2016. Actitudes de los empleadores hacia los inmigrantes refugiados según una encuesta suiza. *Revista Internacional del Trabajo* 135:2, 339-363. [Crossref]

384. Giovanna Fullin. 2016. Labour market outcomes of immigrants in a South European country: do race and religion matter?. *Work, Employment and Society* 30:3, 391-409. [Crossref]

389. . Review of causal inference concepts and methods 18-39. [Crossref]

397. Luc Bovens. 2016. Selection under Uncertainty: Affirmative Action at Shortlisting Stage: Table 1. *Mind* **125**:498, 421–437. [Crossref]

400. Dawn Marie Dow. 2016. The Deadly Challenges of Raising African American Boys. *Gender & Society* **30**:2, 161–188. [Crossref]

413. Mathieu Bunel, Yannick L?Horty, Pascale Petit. 2016. Discrimination based on place of residence and access to employment. *Urban Studies* 53:2, 267–286. [Crossref]

416. Paul L. Morgan, George Farkas. 2016. Evidence and Implications of Racial and Ethnic Disparities in Emotional and Behavioral Disorders Identification and Treatment. *Behavioral Disorders* 41:2, 122-131. [Crossref]

418. J. Sebastian Leguizamon, Susane Leguizamon, Wesley Howden. 2016. Revisiting the Link Between Economic Distress, Race, and Domestic Violence. *Journal of Interpersonal Violence* 10, 088626051771117. [Crossref]

420. Hwok-Aun Lee, Muhammed Abdul Khalid. 2016. Discrimination of high degrees: race and graduate hiring in Malaysia. *Journal of the Asia Pacific Economy* 21:1, 53-76. [Crossref]

423. Dean Rockwell. Inequality in Organizations 1–6. [Crossref]

424. Zandria Felice Robinson. Intersectionality 477-499. [Crossref]

425. Arch Woodside, Rouxelle de Villiers, Roger Marshall. Incompetency Training: Theory, Practice, and Remedies 19-47. [Crossref]

426. Anders Persson. Implicit Bias in Predictive Data Profiling Within Recruitments 212-230. [Crossref]

427. Claudia Diehl, Patrick Fick. Ethnische Diskriminierung im deutschen Bildungssystem 243-286. [Crossref]

428. Alexander M. Danzer. Methoden der ökonomischen Migrationsforschung 191-223. [Crossref]

430. Lisa D. Cook, Trevor D. Logan, John M. Parman. 2016. The mortality consequences of distinctively black names. *Explorations in Economic History* 59, 114-125. [Crossref]

433. Charles H. Lea, Laura S. Abrams. From Ex-Offender to New Contributor: An Examination of How a Community-Based Reentry Program Addresses Racial Barriers to Employment 215–244. [Crossref]

438. Axel Cleeremans, Victor Ginsburgh, Olivier Klein, Abdul Noury. 2016. What’s in a Name? The Effect of an Artist’s Name on Aesthetic Judgments. *Empirical Studies of the Arts* **34**:1, 126–139. [Crossref]

441. Bosco B. Bae. 2016. Christianity and Implicit Racism in the U.S. Moral and Human Economy. *Open Theology* 2:1. . [Crossref]

442. Tim Sawert. 2016. Tote Sprachen als lohnende Investition?. *Zeitschrift für Soziologie* **45**:5. . [Crossref]

444. Devah Pager. 2016. Are Firms That Discriminate More Likely to Go Out of Business?. *Sociological Science* 3, 849–859. [Crossref]

450. Eric Arce, Denise A. Segura. Stratification in the Labor Market 1–3. [Crossref]

453. Mahmood Araï, Damien Besancenot, Kim Huynh, Ali Skalli. 2015. Children’s First Names, Religiosity and Immigration Background in France. *International Migration* **53**:6, 145–152. [Crossref]

461. Agostino Mazziotta, Michael Zerr, Anette Rohmann. 2015. The Effects of Multiple Stigmas on Discrimination in the German Housing Market. *Social Psychology* **46**:6, 325-334. [Crossref]

462. Jacob Copeman. 2015. Secularism’s Names: Commitment to Confusion and the Pedagogy of the Name. *South Asia Multidisciplinary Academic Journal* :12. . [Crossref]

463. Claudia L. Aranda, Diane K. Levy, Sierra Stoney. Role Playing **383-411**. [Crossref]

465. Sarah Vansteenkiste, Nick Deschacht, Luc Sels. 2015. Why are unemployed aged fifty and over less likely to find a job? A decomposition analysis. *Journal of Vocational Behavior* **90**, 55-65. [Crossref]

496. Bertin M. Louis, Wornie L. Reed. Racial Justice under President Obama: A Misuse of the Bully Pulpit 77-99. [Crossref]

497. Patrick S. Forscher, Patricia G. Devine. Controlling the Influence of Stereotypes on One's Thoughts 1-12. [Crossref]

498. David D. Laitin, Sangick Jeon. Exploring Opportunities in Cultural Diversity 1-17. [Crossref]

499. Jan-Erik Lönnqvist, Heike Hennig-Schmidt, Gari Walkowitz. 2015. Ethnicity- and Sex-Based Discrimination and the Maintenance of Self-Esteem. PLOS ONE 10:5, e0124622. [Crossref]

500. Omar Al-Ubaydli, John A. List. 2015. Do Natural Field Experiments Afford Researchers More or Less Control than Laboratory Experiments?. American Economic Review 105:5, 462-466. [Abstract] [View PDF article] [PDF with links]

504. Ritwik Banerjee, Nabanita Datta Gupta. 2015. Awareness Programs and Change in Taste-Based Caste Prejudice. PLOS ONE 10:4, e0118546. [Crossref]

505. Max Besbris, Jacob William Faber, Peter Rich, Patrick Sharkey. 2015. Effect of neighborhood stigma on economic transactions. Proceedings of the National Academy of Sciences 112:16, 4994-4998. [Crossref]

506. Margaret Maurer-Fazio, Lei Lei. 2015. “As rare as a panda”. International Journal of Manpower 36:1, 68-85. [Crossref]

508. Monica Solinas-Saunders, Melissa J. Stacer, Roger Guy. 2015. Ex-offender barriers to employment: racial disparities in labor markets with asymmetric information. Journal of Crime and Justice 38:2, 249-269. [Crossref]

510. M. Guell, J. V. Rodriguez Mora, C. I. Telmer. 2015. The Informational Content of Surnames, the Evolution of Intergenerational Mobility, and Assortative Mating. The Review of Economic Studies 82:2, 693-735. [Crossref]

511. Claire L. Adida, David D. Laitin, Marie-Anne Valfort. 2015. RELIGIOUS HOMOPHILY IN A SECULAR COUNTRY: EVIDENCE FROM A VOTING GAME IN FRANCE. Economic Inquiry 53:2, 1187-1206. [Crossref]
513. Stijn Baert, Eddy Omey. 2015. Hiring Discrimination Against Pro-union Applicants: The Role of Union Density and Firm Size. De Economist. [Crossref]
514. Vonnie C. McLoyd, Kelly M. Purcell, Cecily R. Hardaway. Race, Class, and Ethnicity in Young Adulthood 1-53. [Crossref]
515. Richard Reed, Anna King, Gail Whiteford. 2015. Re-conceptualising sustainable widening participation: evaluation, collaboration and evolution. Higher Education Research & Development 34:2, 383-396. [Crossref]
518. Clara L. Wilkins, Joseph D. Wellman, Laura G. Babbitt, Negin R. Toosi, Katherine D. Schad. 2015. You can win but I can't lose: Bias against high-status groups increases their zero-sum beliefs about discrimination. Journal of Experimental Social Psychology 57, 1-14. [Crossref]
519. Arnfinn H. Midtbøen. 2015. The context of employment discrimination: interpreting the findings of a field experiment. The British Journal of Sociology 66:1, 193-214. [Crossref]
520. Christian Brown. 2015. Returns to Postincarceration Education for Former Prisoners*. Social Science Quarterly 96:1, 161-175. [Crossref]
521. Héctor R. Cordero-Guzmán. 2015. Worker Centers, Worker Center Networks, and the Promise of Protections for Low-Wage Workers. WorkingUSA 18:1, 31-57. [Crossref]
523. Alexandre Pascual, Nicolas Guéguen, Boris Vallée, Marcel Lourel, Olivier Cosnefroy. 2015. First Name Popularity as Predictor of Employability. Names 63:1, 30-36. [Crossref]
524. Christopher Jay Roussin. 2015. Age differences in the perception of new co-worker benevolence. Journal of Managerial Psychology 30:1, 71-86. [Crossref]
528. Ruth Ditlmann, Elizabeth Levy Paluck. Field Experiments 128-134. [Crossref]
529. Xiaolu Wang. Mediation, Statistical 75-80. [Crossref]
530. Arthur Sweetman, Jan C. van Ours. Immigration 1141-1193. [Crossref]
531. Nancy DiTomaso. 2015. Racism and discrimination versus advantage and favoritism: Bias for versus bias against. Research in Organizational Behavior 35, 57-77. [Crossref]
532. Damon Centola, Arnout van de Rijt. 2015. Choosing your network: Social preferences in an online health community. Social Science & Medicine 125, 19-31. [Crossref]

534. Jacqueline Chattopadhyay. 2015. Are press depictions of Affordable Care Act beneficiaries favorable to policy durability? *Politics and the Life Sciences* 34:02, 7–43. [Crossref]

535. Stijn Baert, Elsy Verhofstadt. 2015. Labour market discrimination against former juvenile delinquents: evidence from a field experiment. *Applied Economics* 47:11, 1061. [Crossref]

536. Štěpán Jurajda, Daniel Münich. 2015. Candidate ballot information and election outcomes: the Czech case. *Post-Soviet Affairs* 31:5, 448. [Crossref]

545. Kimberly Diggles. 2014. Addressing Racial Awareness and Color-Blindness in Higher Education. *New Directions for Teaching and Learning* 2014:140, 31–44. [Crossref]

548. Quayshawn Spencer. 2014. A Radical Solution to the Race Problem. *Philosophy of Science* 81:5, 1025–1038. [Crossref]

549. Steinar Holden, Åsa Rosén. 2014. DISCRIMINATION AND EMPLOYMENT PROTECTION. *Journal of the European Economic Association* 12:6, 1676–1699. [Crossref]

554. Markus Frölich, Martin Huber. 2014. Treatment evaluation with multiple outcome periods under endogeneity and attrition. *Journal of the American Statistical Association* 00-00. [Crossref]

555. Enrica N. Ruggs, Michelle R. Hebl, Sarah Singleterry Walker, Naomi Fa-Kaji. 2014. Selection biases that emerge when age meets gender. *Journal of Managerial Psychology* 29:8, 1028-1043. [Crossref]

556. Stijn Baert, Ann-Sophie De Pauw. 2014. Is ethnic discrimination due to distaste or statistics?. *Economics Letters* 125:2, 270-273. [Crossref]

559. Stijn Baert. 2014. Career lesbians. Getting hired for not having kids?. *Industrial Relations Journal* 45:6, 543-561. [Crossref]

566. Ghazala Azmat, Barbara Petrongolo. 2014. Gender and the labor market: What have we learned from field and lab experiments?. *Labour Economics* 30, 32-40. [Crossref]

567. Andrea Lanfranchi. 2014. The significance of the interculturally competent school psychologist for achieving equitable education outcomes for migrant students. *School Psychology International* 35:5, 544-558. [Crossref]

569. Jennifer R. Spoor, Justin J. Lehmiller. 2014. The Impact of Course Title and Instructor Gender on Student Perceptions and Interest in a Women’s and Gender Studies Course. *PLoS ONE* 9:9, e106286. [Crossref]

572. Jishnu Das, Jeffrey Hammer. 2014. Quality of Primary Care in Low-Income Countries: Facts and Economics. *Annual Review of Economics* 6:1, 525-553. [Crossref]

573. Sha’Kema M. Blackmon, Anita Jones Thomas. 2014. Linking Contextual Affordances. *Journal of Career Development* 41:4, 301-320. [Crossref]

574. Donald P. Green, Amber D. Spry. 2014. Hate Crime Research. *Journal of Contemporary Criminal Justice* 30:3, 228-246. [Crossref]

578. Lisa D. Cook, Trevon D. Logan, John M. Parman. 2014. Distinctively black names in the American past. *Explorations in Economic History* 53, 64-82. [Crossref]

582. Doing ethnicity in organizations 81-97. [Crossref]

583. References 219-267. [Crossref]

585. Yang Song. 2014. What should economists know about the current Chinese hukou system?. *China Economic Review* 29, 200-212. [Crossref]

590. Rafaela M. Dancygier, David D. Laitin. 2014. Immigration into Europe: Economic Discrimination, Violence, and Public Policy. *Annual Review of Political Science* 17:1, 43-64. [Crossref]

591. Alison Cook, Christy M. Glass. 2014. Analyzing promotions of racial/ethnic minority CEOs. *Journal of Managerial Psychology* 29:4, 440-454. [Crossref]

594. Lieselotte Blommaert, Marcel Coenders, Frank van Tubergen. 2014. Ethnic Discrimination in Recruitment and Decision Makers’ Features: Evidence from Laboratory Experiment and Survey Data using a Student Sample. *Social Indicators Research* 116:3, 731-754. [Crossref]

596. Henrich R. Greve. Sex, drugs, and rolling rocks: Adolescent counter-normative behaviors and their job mobility as young adults 159-190. [Crossref]

597. Mary-Frances Winters. From Diversity to Inclusion: An Inclusion Equation 205-228. [Crossref]

600. Fabrizio Panebianco. 2014. Socialization networks and the transmission of interethnic attitudes. *Journal of Economic Theory* 150, 583-610. [Crossref]

601. Magnus Carlsson, Stefan Eriksson. 2014. Discrimination in the rental market for apartments. *Journal of Housing Economics* 23, 41-54. [Crossref]

607. David S. Pedulla. 2014. The Positive Consequences of Negative Stereotypes. *Social Psychology Quarterly* 77:1, 75-94. [Crossref]

611. Nicole M. Lindner, Alexander Graser, Brian A. Nosek. 2014. Age-Based Hiring Discrimination as a Function of Equity Norms and Self-Perceived Objectivity. *PLoS ONE* 9:1, e84752. [Crossref]

612. Choon-Hwa Lim, Meena Chavan, Christopher Chan. 2014. “Culture”—The elephant in the room in structured behavioral selection interview. *International Journal of Intercultural Relations* 42, 1. [Crossref]
615. Jessica M. Vasquez. 2014. RACE COGNIZANCE AND COLORBLINDNESS. *Du Bois Review: Social Science Research on Race* **11:**02, 273-293. [Crossref]
616. Rashawn Ray. 2014. STALLED DESEGREGATION AND THE MYTH OF RACIAL EQUALITY IN THE U.S. LABOR MARKET. *Du Bois Review: Social Science Research on Race* **11:**02, 477-487. [Crossref]
621. Hephzibah V. Strmic-Pawl. 2014. The Influences Affecting and the Influential Effects of Multiracials: Multiracialism and Stratification. *Sociology Compass* **8:**1, 63-77. [Crossref]
622. Karen Teel. 2014. Getting Out of the Left Lane: The Possibility of White Antiracist Pedagogy. *Teaching Theology & Religion* **17:**1, 3-26. [Crossref]
623. Magnus Carlsson, Luca Fumarco, Dan-Olof Rooth. 2014. Does the design of correspondence studies influence the measurement of discrimination?. *IZA Journal of Migration* **3:**1, 11. [Crossref]
627. Steven Finlay. Ethics and Legislation 85-103. [Crossref]

635. Amy R. Krosch, Leslie Berntsen, David M. Amodio, John T. Jost, Jay J. Van Bavel. 2013. On the ideology of hypodescent: Political conservatism predicts categorization of racially ambiguous faces as Black. *Journal of Experimental Social Psychology* **49**:6, 1196-1203. [Crossref]

644. BRADY P. HORN, JILL J. MCCLUSKEY, RON C. MITTELHAMMER. 2013. QUANTIFYING BIAS IN DRIVING-UNDER-THE-INFLUENCE ENFORCEMENT: Economic Inquiry no-no. [Crossref]

645. Claire L. Adida, David D. Laitin, Marie-Anne Valfort. 2013. Women, Muslim Immigrants, and Economic Integration in France. *Economics & Politics* n/a-n/a. [Crossref]

646. Eden B. King, Michelle R. Hebl, Whitney Botsford Morgan, Afra Saeed Ahmad. 2013. Field Experiments on Sensitive Organizational Topics. *Organizational Research Methods* **16**:4, 501-521. [Crossref]

651. Jeffrey M. Cucina, Sharron Thompson Peyton, Lauren L. Clark, Chihwei Su, Benjamin E. Liberman. 2013. Diversity and Inclusion Science and Practice Requires an Interdisciplinary Approach. Industrial and Organizational Psychology 6:3, 221-232. [Crossref]

652. Sachin S. Pandya, Peter Siegelman. 2013. Underclaiming and Overclaiming. Law & Social Inquiry 38:4, 836-862. [Crossref]

653. Myrtle P. Bell, Daphne P. Berry, Dennis J. Marquardt, Tiffany Galvin Green. 2013. Introducing discriminatory job loss: antecedents, consequences, and complexities. Journal of Managerial Psychology 28:6, 584-605. [Crossref]

662. Beau Abar, Caitlin C. Abar, Edwin D. Boudreaux. 2013. Feasibility of audit methods to study access to substance use treatment. Journal of Substance Abuse Treatment. [Crossref]

668. John Bailey, Michael Wallace, Bradley Wright. 2013. Are Gay Men and Lesbians Discriminated Against When Applying for Jobs? A Four-City, Internet-Based Field Experiment. Journal of Homosexuality 60:6, 873-894. [Crossref]

672. Audrey Yap. 2013. Ad Hominem Fallacies, Bias, and Testimony. *Argumentation* 27:2, 97-109. [Crossref]

678. Christopher D. DeSante. 2013. Working Twice as Hard to Get Half as Far: Race, Work Ethic, and America’s Deserving Poor. *American Journal of Political Science* 57:2, 342-356. [Crossref]

681. Raj Andrew Ghoshal, Cameron Lippard, Vanesa Ribas, Ken Muir. 2013. Beyond Bigotry. *Teaching Sociology* 41:2, 130-143. [Crossref]

683. Dena Hassouneh. 2013. Unconscious Racist Bias: Barrier to a Diverse Nursing Faculty. *Journal of Nursing Education* 52:4, 183-184. [Crossref]

686. Yan Hairong, Barry Sautman. 2013. ?The Beginning of a World Empire?? Contesting the Discourse of Chinese Copper Mining in Zambia. *Modern China* 39:2, 131-164. [Crossref]

692. Anna Stone, Toby Wright. 2013. When your face doesn’t fit: employment discrimination against people with facial disfigurements. *Journal of Applied Social Psychology* n/a-n/a. [Crossref]

694. Hendrik Jürges, Joachim Winter. 2013. ARE ANCHORING VIGNETTES RATINGS SENSITIVE TO VIGNETTE AGE AND SEX?. *Health Economics* **22**:1, 1-13. [Crossref]

695. Emily M. Drew. Whiteness as Currency: Rethinking the Exchange Rate 101-105. [Crossref]

696. Kailing Shen, Peter Kuhn. Do Chinese Employers Avoid Hiring Overqualified Workers? Evidence from an Internet Job Board 1-30. [Crossref]

697. Roberto M. Fernandez, Jason Greenberg. Race, Network Hiring, and Statistical Discrimination 81-102. [Crossref]

698. Andrew W. Nutting. 2013. THE BOOKER DECISION AND DISCRIMINATION IN FEDERAL CRIMINAL SENTENCES. *Economic Inquiry* **51**:1, 637-652. [Crossref]

699. Innes Robert, Mitra Arnab. 2013. IS DISHONESTY CONTAGIOUS?. *Economic Inquiry* **51**:1, 722-734. [Crossref]

700. Kosuke Imai, Dustin Tingley, Tepepi Yamamoto. 2013. Experimental designs for identifying causal mechanisms. *Journal of the Royal Statistical Society: Series A (Statistics in Society)* **176**:1, 5-51. [Crossref]

710. Olaoluwa Olusanya, Jeffrey M. Cancino. 2012. Cross-Examining the Race-Neutral Frameworks of
Prisoner Re-Entry. *Critical Criminology* 20:4, 345-358. [Crossref]

711. Annabelle Krause, Ulf Rinne, Klaus F. Zimmermann. 2012. Anonymous job applications of fresh
Ph.D. economists. *Economics Letters* 117:2, 441-444. [Crossref]

712. Vianney Dequiedt, Yves Zenou. 2012. International Migration, Imperfect Information, and Brain
Drain. *Journal of Development Economics*. [Crossref]

713. John Griffin, David Nickerson, Abigail Wozniak. 2012. Racial differences in inequality aversion:
Evidence from real world respondents in the ultimatum game. *Journal of Economic Behavior &
Organization* 84:2, 600-617. [Crossref]

reduction in implicit race bias: A prejudice habit-breaking intervention. *Journal of Experimental Social
Psychology* 48:6, 1267-1278. [Crossref]

from a field experiment. *Applied Economics Letters* 19:17, 1727-1730. [Crossref]

American Behavioral Scientist 56:11, 1525-1564. [Crossref]

Social Psychological and Personality Science 3:6, 730-737. [Crossref]

718. Ian Larkin, Lamar Pierce, Francesca Gino. 2012. The psychological costs of pay-for-performance:
Implications for the strategic compensation of employees. *Strategic Management Journal* 33:10,
1194-1214. [Crossref]

from an Internet-based search channel. *Empirical Economics* 43:2, 537-563. [Crossref]

Networks* 34:4, 601-613. [Crossref]

721. Israel Waismel-Manor, Natalie Jomini Stroud. 2012. The Influence of President Obama’s, Middle
Name on Middle Eastern and U.S. Perceptions. *Political Behavior*. [Crossref]

[View PDF article] [PDF with links]

Studies* 43:6, 667-692. [Crossref]

724. David R. Williams. 2012. Miles to Go before We Sleep. *Journal of Health and Social Behavior* 53:3,
279-295. [Crossref]

725. William T. L. Cox, Lyn Y. Abramson, Patricia G. Devine, Steven D. Hollon. 2012. Stereotypes,
Prejudice, and Depression. *Perspectives on Psychological Science* 7:5, 427-449. [Crossref]

Psychological and Personality Science* 3:5, 590-596. [Crossref]

727. Peter A. Heslin, Myrtle P. Bell, Pinar O. Fletcher. 2012. The devil without and within: A conceptual
model of social cognitive processes whereby discrimination leads stigmatized minorities to become
discouraged workers. *Journal of Organizational Behavior* 33:6, 840-862. [Crossref]

[Crossref]

and Society* 26:4, 574-587. [Crossref]
734. Tyler J. VanderWeele, Miguel A. Hernán. Causal Effects and Natural Laws: Towards a Conceptualization of Causal Counterfactuals for Nonmanipulable Exposures, with Application to the Effects of Race and Sex 101–113. [Crossref]
742. Marc Bendick, Ana P. Nunes. 2012. Developing the Research Basis for Controlling Bias in Hiring. *Journal of Social Issues* 68:2, 238–262. [Crossref]
745. JULIA LEVASLINA, FREDERICK P. MORGESON, MICHAEL A. CAMPION. 2012. TELL ME SOME MORE: EXPLORING HOW VERBAL ABILITY AND ITEM VERIFIABILITY INFLUENCE RESPONSES TO BIODATA QUESTIONS IN A HIGH-STAKES SELECTION CONTEXT. *Personnel Psychology* 65:2, 359–383. [Crossref]
748. Eva Derous, Ann Marie Ryan, Hannah-Hanh D. Nguyen. 2012. Multiple categorization in resume screening: Examining effects on hiring discrimination against Arab applicants in field and lab settings. *Journal of Organizational Behavior* 33:4, 544–570. [Crossref]

750. Therese Macan, Stephanie Merritt. Actions Speak Too: Uncovering Possible Implicit and Explicit Discrimination in the Employment Interview Process 293-337. [Crossref]

752. Petra Moser. 2012. Taste-based discrimination evidence from a shift in ethnic preferences after WWI. *Explorations in Economic History* 49:2, 167-188. [Crossref]

753. Randall Akee, Mutlu Yuksel. 2012. The Decreasing Effect of Skin Tone on Women's Full-Time Employment. *ILR Review* 65:2, 398-426. [Crossref]

759. Steven P. Vallas. Work and Employment 418-443. [Crossref]

761. Thomas Cornelissen, Uwe Jirjahn. 2012. September 11th and the earnings of Muslims in Germany —The moderating role of education and firm size. *Journal of Economic Behavior & Organization* 81:2, 490-504. [Crossref]

765. Gloria Moss. Professional Services Firms and Gender Diversity 151-185. [Crossref]

767. Michael Wallace, Bradley R.E. Wright, Christine Zoula, Stacy Missari, Christopher M. Donnelly, Annie Scola Wisnesky. A New Approach for Studying Stratification and Religion: Early Results from a National Internet-Based Field Experiment study of U.S. Churches 369-397. [Crossref]

768. D. Lisa Cothran. Disparities in the Prevalence of Mental Illness Among Black Americans 277-298. [Crossref]

769. Olof Åslund, Oskar Nordströum Skans. 2012. Do Anonymous Job Application Procedures Level the Playing Field?. *ILR Review* 65:1, 82-107. [Crossref]

772. Arnfinn H. Midtbøen, Jon Rogstad. 2012. Discrimination. *Nordic Journal of Migration Research* 1:-1, 1-10. [Crossref]

774. Geoffrey Beattie, Patrick Johnson. 2011. Possible unconscious bias in recruitment and promotion and the need to promote equality. *Perspectives: Policy and Practice in Higher Education* 1-7. [Crossref]

777. Simon M. Laham, Peter Koval, Adam L. Alter. 2011. The name-pronunciation effect: Why people like Mr. Smith more than Mr. Colquhoun. *Journal of Experimental Social Psychology* . [Crossref]

785. R. Caers, V. Castelyns. 2011. LinkedIn and Facebook in Belgium: The Influences and Biases of Social Network Sites in Recruitment and Selection Procedures. *Social Science Computer Review* 29:4, 437-448. [Crossref]

788. Andrew Hanson, Zackary Hawley, Aryn Taylor. 2011. Subtle discrimination in the rental housing market: Evidence from e-mail correspondence with landlords. *Journal of Housing Economics* . [Crossref]

791. STEVIE WATSON, OSEI APPIAH, CORLISS G. THORNTON. 2011. The Effect of Name on Pre-Interview Impressions and Occupational Stereotypes: The Case of Black Sales Job Applicants. *Journal of Applied Social Psychology* 41:10, 2405-2420. [Crossref]

798. Lieselotte Blommaert, Frank van Tubergen, Marcel Coenders. 2011. Implicit and explicit interethnic attitudes and ethnic discrimination in hiring. *Social Science Research* . [Crossref]

799. William Darity. 2011. REVISITING THE DEBATE ON RACE AND CULTURE. *Du Bois Review: Social Science Research on Race* 8:02, 467-476. [Crossref]

804. Oriana Bandiera,, Iwan Barankay,, Imran Rasul. 2011. Field Experiments with Firms. *Journal of Economic Perspectives* 25:3, 63-82. [Abstract] [View PDF article] [PDF with links]

806. Martín Moreno, Hugo Nopo, Jaime Saavedra, Máximo Torero. 2011. Detecting Gender and Racial Discrimination in Hiring through Monitoring Intermediation Services: The Case of Selected Occupations in Metropolitan Lima, Peru. *World Development* . [Crossref]

810. Zahra Siddique. 2011. Evidence on Caste Based Discrimination. Labour Economics. [Crossref]

813. Thomas G. Blomberg, William D. Bales, Alex R. Piquero. 2011. Is Educational Achievement a Turning Point for Incarcerated Delinquents Across Race and Sex?. Journal of Youth and Adolescence. [Crossref]

815. Reyn van Ewijk. 2011. Same work, lower grade? Student ethnicity and teachers’ subjective assessments. Economics of Education Review. [Crossref]

816. Dan-Olof Rooth. 2011. Work out or out of work — The labor market return to physical fitness and leisure sports activities. Labour Economics 18:3, 399-409. [Crossref]

817. SUBHASISH DUGAR, HAIMANTI BHATTACHARYA, DAVID REILEY. 2011. CAN’T BUY ME LOVE? A FIELD EXPERIMENT EXPLORING THE TRADE-OFF BETWEEN INCOME AND CASTE-STATUS IN AN INDIAN MATRIMONIAL MARKET. Economic Inquiry no-no. [Crossref]

822. Therese Macan, Stephanie Merritt. Actions Speak Too: Uncovering Possible Implicit and Explicit Discrimination in the Employment Interview Process 293-337. [Crossref]

823. Leo Kaas, Christian Manger. 2011. Ethnic Discrimination in Germany’s Labour Market: A Field Experiment. German Economic Review no-no. [Crossref]

824. CAROLE J. LEE, CHRISTIAN D. SCHUNN. 2011. Social Biases and Solutions for Procedural Objectivity. Hypatia no-no. [Crossref]

825. John A. List, Imran Rasul. Field Experiments in Labor Economics 103-228. [Crossref]

826. KOSUKE IMAI, LUKE KEELE, DUSTIN TINGLEY, TEPPEI YAMAMOTO. 2011. Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies. American Political Science Review 105:4, 765. [Crossref]

830. Ragnar Bengtsson, Ellis Iverman, Bjorn Tyrefors Hinnerich. 2011. Gender and ethnic discrimination in the rental housing market. *Applied Economics Letters* 1-5. [Crossref]

832. Shannon K. Carter, Fernando I. Rivera. Social Constructions of the Nonprejudiced White Self 111-133. [Crossref]

839. Thomas S. Moore. 2010. The Locus of Racial Disadvantage in the Labor Market. *American Journal of Sociology* 116:3, 909-42. [Crossref]

840. Phillip Connor. 2010. Religion as resource: Religion and immigrant economic incorporation#. *Social Science Research*. [Crossref]

841. Clayton S. Rose, William T. Bielby. 2010. Race at the top: How companies shape the inclusion of African Americans on their boards in response to institutional pressures. *Social Science Research*. [Crossref]

845. Magnus Carlsson. 2010. Experimental Evidence of Discrimination in the Hiring of First- and Second-generation Immigrants. *LABOUR* 24:3, 263-278. [Crossref]

849. RAY BLOCK JR., CHINONYE ONWUNLI. 2010. Managing Monikers: The Role of Name Presentation in the 2008 Presidential Election. Presidential Studies Quarterly 40:3, 464–481. [Crossref]

851. References 310–338. [Crossref]

855. NICK DRYDAKIS, MINAS VLASSIS. 2010. ETHNIC DISCRIMINATION IN THE GREEK LABOUR MARKET: OCCUPATIONAL ACCESS, INSURANCE COVERAGE AND WAGE OFFERS. The Manchester School 78:3, 201–218. [Crossref]

859. Tom Ahn, Peter Arcidiacono, Alvin Murphy, Omari Swinton. 2010. Explaining cross-racial differences in teenage labor force participation: Results from a two-sided matching model. Journal of Econometrics 156:1, 201–211. [Crossref]

865. Margaret Kelaher, Deborah J. Warr, Peter Feldman, Theonie Tacticos. 2010. Living in ‘Birdsville’: Exploring the impact of neighbourhood stigma on health. Health & Place 16:2, 381–388. [Crossref]

866. Anne-Célia Disdier, Keith Head, Thierry Mayer. 2010. Exposure to foreign media and changes in cultural traits: Evidence from naming patterns in France. Journal of International Economics 80:2, 226–238. [Crossref]
868. Melissa R. Herman. 2010. Do You See What I Am?. Social Psychology Quarterly 73:1, 58-78. [Crossref]
870. Myrtle P. Bell, Eileen N. Kwesiga, Daphne P. Berry. 2010. Immigrants. Journal of Managerial Psychology 25:2, 177-188. [Crossref]
872. Guido W. Imbens, Donald B. Rubin. Rubin Causal Model 229-241. [Crossref]
875. SAKU AURA, GREGORY D. HESS. 2010. WHAT’S IN A NAME?: Economic Inquiry 48:1, 214-227. [Crossref]
876. Hannah Riley Bowles, Michele Gelfand. 2010. Status and the Evaluation of Workplace Deviance. Psychological Science 21:1, 49-54. [Crossref]
879. Rodney J. Andrews. 2010. Comments on “Black Americans in the 21st Century: Should We be Optimistic or Concerned?”. The Review of Black Political Economy 37:3-4, 253-255. [Crossref]
882. Michelle Jackson. 2009. Disadvantaged through discrimination? The role of employers in social stratification1. The British Journal of Sociology 60:4, 669-692. [Crossref]
Minorities: Interactions Between Prejudice and Job Characteristics. Human Performance 22:4, 297-320. [Crossref]

Non-Black Divide. Race and Social Problems 1:3, 157-170. [Crossref]

of Latinos: The Roles of Ethnicity, Criminal History, and Qualifications. Race and Social Problems
1:3, 171-181. [Crossref]

Neighborhood Preferences? Results from a Video Experiment. American Journal of Sociology 115:2, 527-559. [Crossref]

Obligation. Journal of Business Ethics 88:1, 83-101. [Crossref]

892. Daniel M. Oppenheimer, Tom Meyvis, Nicolas Davidenko. 2009. Instructional manipulation checks:
Detecting satisficing to increase statistical power. Journal of Experimental Social Psychology 45:4, 867-872. [Crossref]

893. Sabino Kornrich. 2009. Combining Preferences and Processes: An Integrated Approach to Black-
White Labor Market Inequality. American Journal of Sociology 115:1, 1-38. [Crossref]

894. ALI M. AHMED, MATS HAMMARSTEDT. 2009. Detecting Discrimination against Homosexuals: Evidence from a Field Experiment on the Internet. Economica 76:303, 588-597. [Crossref]

895. MARLENE KIM. 2009. Race and Gender Differences in the Earnings of Black Workers. Industrial
Relations: A Journal of Economy and Society 48:3, 466-488. [Crossref]

896. Birgit Becker. 2009. Immigrants’ emotional identification with the host society. Ethnicities 9:2, 200-225. [Crossref]

897. Lars-Eric Petersen, Franciska Krings. 2009. Are Ethical Codes of Conduct Toothless Tigers for
Dealing with Employment Discrimination?. Journal of Business Ethics 85:4, 501-514. [Crossref]

Journal of Manpower 30:1/2, 43-55. [Crossref]

899. Denis Fougère, Mirna Safi. 2009. Naturalization and employment of immigrants in France (1968-
1999). International Journal of Manpower 30:1/2, 83-96. [Crossref]

Experimental Evidence on Racial Group Loyalty. American Economic Journal: Applied Economics 1:2, 64-87. [Abstract] [View PDF article] [PDF with links]

901. Guido W. Imbens,, Jeffrey M. Wooldridge. 2009. Recent Developments in the Econometrics of
Program Evaluation. Journal of Economic Literature 47:1, 5-86. [Abstract] [View PDF article] [PDF with links]

health status in non-linear models of health care disparities. Health Services and Outcomes Research
Methodology 9:1, 1-21. [Crossref]

United States. Race and Social Problems 1:1, 12-26. [Crossref]

904. James King, Myrtle Bell, Ericka Lawrence. 2009. Religion as an aspect of workplace diversity: an
examination of the US context and a call for international research. Journal of Management, Spirituality
& Religion 6:1, 43-57. [Crossref]

909. Cecily R. Hardaway, Vonnie C. McLoyd. 2009. Escaping Poverty and Securing Middle Class Status: How Race and Socioeconomic Status Shape Mobility Prospects for African Americans During the Transition to Adulthood. *Journal of Youth and Adolescence* 38:2, 242-256. [Crossref]

914. Gitte Jensen, Magdalena Cismaru, Anne Lavack, Romulus Cismaru. 2009. Examining prejudice-reduction theories in anti-racism initiatives. *International Journal of Nonprofit and Voluntary Sector Marketing* n/a-n/a. [Crossref]

915. Kerwin Kofi Charles, Jonathan Guryan. Taste-Based Discrimination 1-8. [Crossref]

918. Vincent L. Hutchings. 2009. Change or More of The Same?. *Public Opinion Quarterly* 73:5, 917-942. [Crossref]

922. Lisa M. Leslie, Eden B. King, Jill C. Bradley, Michelle R. Hebl. 2008. Triangulation Across Methodologies: All Signs Point to Persistent Stereotyping and Discrimination in Organizations. *Industrial and Organizational Psychology* 1:04, 399-404. [Crossref]

923. C. MIRJAM VAN PRAAG, BERNARD M.S. VAN PRAAG. 2008. The Benefits of Being Economics Professor A (rather than Z). *Economica* 75:300, 782-796. [Crossref]
963. Heidi B. Carlone, Angela Johnson. 2007. Understanding the science experiences of successful women of color: Science identity as an analytic lens. *Journal of Research in Science Teaching* 44:8, 1187-1218. [Crossref]

968. E Asano, M Sunbulli, F Aljabi, Y Asano. 2007. Encouragement to contribute to peer-review process in clinical neurology journals. *Brain and Development* 29:2, 98-101. [Crossref]

970. 2007. Table of Contents. *ASHE Higher Education Report* 33:1, 1-139. [Crossref]

971. Leanna Stiefel, Amy Ellen Schwartz, Ingrid Gould Ellen. 2007. Disentangling the racial test score gap: Probing the evidence in a large urban school district. *Journal of Policy Analysis and Management* 26:1, 7-30. [Crossref]

972. John J. Donohue. Chapter 18 Antidiscrimination Law 1387-1472. [Crossref]

973. Colin Camerer, Eric Talley. Chapter 21 Experimental Study of Law 1619–1650. [Crossref]

974. Daniel Sabbagh. A Strategic and Consequentialist Perspective: Affirmative Action as an Instrument for Deracializing American Society 49-85. [Crossref]

975. Pnina Shachaf, Shannon Oltmann. E-Quality and E-Service Equality 247c-247c. [Crossref]

976. Devah Pager. 2007. The Use of Field Experiments for Studies of Employment Discrimination: Contributions, Critiques, and Directions for the Future. *The ANNALS of the American Academy of Political and Social Science* 609:1, 104-133. [Crossref]

